Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38741480

RESUMO

Molnupiravir, an orally administered prodrug of ß-d-N4-hydroxycytidine (NHC), is incorporated into newly synthesized RNA by viral RNA-dependent RNA polymerase (RdRp). It is used for treatment of SARS-CoV-2 infections. Incorporation of NHC triphosphate into viral RNA inhibits replication of the virus, at least in part by introducing deleterious mutations. However, there is limited information on NHC incorporation into host RNA and reports on the risk of mutagenicity that molnupiravir/NHC pose to the host are conflicting. We used two liquid chromatography-mass spectrometry (LC-MS) methods to evaluate the incorporation of NHC into RNA and DNA of host Vero E6 cells in a SARS-CoV-2 infection model. To test this, host and viral RNA were degraded to their ribonucleosides, while host DNA was degraded to deoxyribonucleosides. Subsequently, nucleic acid constituents were analyzed by LC-MS, which offers specific, direct, and quantitative determination of incorporation. Our findings revealed concentration dependent NHC incorporation into host cell RNA in both infected and uninfected cell cultures, reaching a maximum of 1 in 7,093 bases. Analysis of host DNA revealed no presence of deoxy-N4-hydroxycytidine down to a detection limit of 1 in 133,000 bases. Our findings therefore suggest minimal to no NHC incorporation into host DNA, indicating a low probability of significant host cell mutagenicity associated with its use.

2.
Nat Commun ; 15(1): 411, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195625

RESUMO

Besides vaccines, the development of antiviral drugs targeting SARS-CoV-2 is critical for preventing future COVID outbreaks. The SARS-CoV-2 main protease (Mpro), a cysteine protease with essential functions in viral replication, has been validated as an effective drug target. Here, we show that Mpro is subject to redox regulation in vitro and reversibly switches between the enzymatically active dimer and the functionally dormant monomer through redox modifications of cysteine residues. These include a disulfide-dithiol switch between the catalytic cysteine C145 and cysteine C117, and generation of an allosteric cysteine-lysine-cysteine SONOS bridge that is required for structural stability under oxidative stress conditions, such as those exerted by the innate immune system. We identify homo- and heterobifunctional reagents that mimic the redox switching and inhibit Mpro activity. The discovered redox switches are conserved in main proteases from other coronaviruses, e.g. MERS-CoV and SARS-CoV, indicating their potential as common druggable sites.


Assuntos
COVID-19 , Cisteína , Humanos , SARS-CoV-2 , Desenho de Fármacos , Oxirredução
3.
Antiviral Res ; 221: 105778, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065245

RESUMO

The ongoing threat of COVID-19 has highlighted the need for effective prophylaxis and convenient therapies, especially for outpatient settings. We have previously developed highly potent single-domain (VHH) antibodies, also known as nanobodies, that target the Receptor Binding Domain (RBD) of the SARS-CoV-2 Spike protein and neutralize the Wuhan strain of the virus. In this study, we present a new generation of anti-RBD nanobodies with superior properties. The primary representative of this group, Re32D03, neutralizes Alpha to Delta as well as Omicron BA.2.75; other members neutralize, in addition, Omicron BA.1, BA.2, BA.4/5, and XBB.1. Crystal structures of RBD-nanobody complexes reveal how ACE2-binding is blocked and also explain the nanobodies' tolerance to immune escape mutations. Through the cryo-EM structure of the Ma16B06-BA.1 Spike complex, we demonstrated how a single nanobody molecule can neutralize a trimeric spike. We also describe a method for large-scale production of these nanobodies in Pichia pastoris, and for formulating them into aerosols. Exposing hamsters to these aerosols, before or even 24 h after infection with SARS-CoV-2, significantly reduced virus load, weight loss and pathogenicity. These results show the potential of aerosolized nanobodies for prophylaxis and therapy of coronavirus infections.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Animais , Cricetinae , Humanos , SARS-CoV-2 , Aerossóis e Gotículas Respiratórios , Glicoproteína da Espícula de Coronavírus , Técnicas de Cultura de Células , Anticorpos Neutralizantes , Anticorpos Antivirais
4.
iScience ; 26(10): 107786, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731621

RESUMO

N4-hydroxycytidine (NHC), the active compound of the drug Molnupiravir, is incorporated into SARS-CoV-2 RNA, causing false base pairing. The desired result is an "error catastrophe," but this bears the risk of mutated virus progeny. To address this experimentally, we propagated the initial SARS-CoV-2 strain in the presence of NHC. Deep sequencing revealed numerous NHC-induced mutations and host-cell-adapted virus variants. The presence of the neutralizing nanobody Re5D06 selected for immune escape mutations, in particular p.E484K and p.F490S, which are key mutations of the Beta/Gamma and Omicron-XBB strains, respectively. With NHC treatment, nanobody resistance occurred two passages earlier than without. Thus, within the limitations of this purely in vitro study, we conclude that the combined action of Molnupiravir and a spike-neutralizing antagonist leads to the rapid emergence of escape mutants. We propose caution use and supervision when using Molnupiravir, especially when patients are still at risk of spreading virus.

5.
iScience ; 25(5): 104293, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35492218

RESUMO

The nucleoside analog N4-hydroxycytidine (NHC) is the active metabolite of the prodrug molnupiravir, which has been approved for the treatment of COVID-19. SARS-CoV-2 incorporates NHC into its RNA, resulting in defective virus genomes. Likewise, inhibitors of dihydroorotate dehydrogenase (DHODH) reduce virus yield upon infection, by suppressing the cellular synthesis of pyrimidines. Here, we show that NHC and DHODH inhibitors strongly synergize in the inhibition of SARS-CoV-2 replication in vitro. We propose that the lack of available pyrimidine nucleotides upon DHODH inhibition increases the incorporation of NHC into nascent viral RNA. This concept is supported by the rescue of virus replication upon addition of pyrimidine nucleosides to the media. DHODH inhibitors increased the antiviral efficiency of molnupiravir not only in organoids of human lung, but also in Syrian Gold hamsters and in K18-hACE2 mice. Combining molnupiravir with DHODH inhibitors may thus improve available therapy options for COVID-19.

6.
EMBO J ; 40(19): e107985, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34302370

RESUMO

Monoclonal anti-SARS-CoV-2 immunoglobulins represent a treatment option for COVID-19. However, their production in mammalian cells is not scalable to meet the global demand. Single-domain (VHH) antibodies (also called nanobodies) provide an alternative suitable for microbial production. Using alpaca immune libraries against the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein, we isolated 45 infection-blocking VHH antibodies. These include nanobodies that can withstand 95°C. The most effective VHH antibody neutralizes SARS-CoV-2 at 17-50 pM concentration (0.2-0.7 µg per liter), binds the open and closed states of the Spike, and shows a tight RBD interaction in the X-ray and cryo-EM structures. The best VHH trimers neutralize even at 40 ng per liter. We constructed nanobody tandems and identified nanobody monomers that tolerate the K417N/T, E484K, N501Y, and L452R immune-escape mutations found in the Alpha, Beta, Gamma, Epsilon, Iota, and Delta/Kappa lineages. We also demonstrate neutralization of the Beta strain at low-picomolar VHH concentrations. We further discovered VHH antibodies that enforce native folding of the RBD in the E. coli cytosol, where its folding normally fails. Such "fold-promoting" nanobodies may allow for simplified production of vaccines and their adaptation to viral escape-mutations.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Mutação/imunologia , SARS-CoV-2/imunologia , Anticorpos de Domínio Único/imunologia , Animais , COVID-19/virologia , Camelídeos Americanos/imunologia , Camelídeos Americanos/virologia , Linhagem Celular , Escherichia coli/virologia , Feminino , Humanos , Glicoproteína da Espícula de Coronavírus/imunologia
7.
Virus Res ; 302: 198469, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34090962

RESUMO

The search for successful therapies of infections with the coronavirus SARS-CoV-2 is ongoing. We tested inhibition of host cell nucleotide synthesis as a promising strategy to decrease the replication of SARS-CoV-2-RNA, thus diminishing the formation of virus progeny. Methotrexate (MTX) is an established drug for cancer therapy and to induce immunosuppression. The drug inhibits dihydrofolate reductase and other enzymes required for the synthesis of nucleotides. Strikingly, the replication of SARS-CoV-2 was inhibited by MTX in therapeutic concentrations around 1 µM, leading to more than 1000-fold reductions in virus progeny in Vero C1008 (Vero E6) and ~100-fold reductions in Calu-3 cells. Virus replication was more sensitive to equivalent concentrations of MTX than of the established antiviral agent remdesivir. MTX strongly diminished the synthesis of viral structural proteins and the amount of released virus RNA. Virus replication and protein synthesis were rescued by folinic acid (leucovorin) and also by inosine, indicating that purine depletion is the principal mechanism that allows MTX to reduce virus RNA synthesis. The combination of MTX with remdesivir led to synergistic impairment of virus replication, even at 100 nM MTX. The use of MTX in treating SARS-CoV-2 infections still awaits further evaluation regarding toxicity and efficacy in infected organisms, rather than cultured cells. Within the frame of these caveats, however, our results raise the perspective of a two-fold benefit from repurposing MTX for treating COVID-19. Firstly, its previously known ability to reduce aberrant inflammatory responses might dampen respiratory distress. In addition, its direct antiviral activity described here would limit the dissemination of the virus.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Antagonistas do Ácido Fólico/farmacologia , Metotrexato/farmacologia , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Animais , COVID-19/virologia , Técnicas de Cultura de Células , Chlorocebus aethiops , Humanos , RNA Viral/genética , SARS-CoV-2/fisiologia , Células Vero , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA