Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(1): e2213715120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577072

RESUMO

The nuclear long non-coding RNA LUCAT1 has previously been identified as a negative feedback regulator of type I interferon and inflammatory cytokine expression in human myeloid cells. Here, we define the mechanistic basis for the suppression of inflammatory gene expression by LUCAT1. Using comprehensive identification of RNA-binding proteins by mass spectrometry as well as RNA immunoprecipitation, we identified proteins important in processing and alternative splicing of mRNAs as LUCAT1-binding proteins. These included heterogeneous nuclear ribonucleoprotein C, M, and A2B1. Consistent with this finding, cells lacking LUCAT1 have altered splicing of selected immune genes. In particular, upon lipopolysaccharide stimulation, the splicing of the nuclear receptor 4A2 (NR4A2) gene was particularly affected. As a consequence, expression of NR4A2 was reduced and delayed in cells lacking LUCAT1. NR4A2-deficient cells had elevated expression of immune genes. These observations suggest that LUCAT1 is induced to control the splicing and stability of NR4A2, which is in part responsible for the anti-inflammatory effect of LUCAT1. Furthermore, we analyzed a large cohort of patients with inflammatory bowel disease as well as asthma and chronic obstructive pulmonary disease. In these patients, LUCAT1 levels were elevated and in both diseases, positively correlated with disease severity. Collectively, these studies define a key molecular mechanism of LUCAT1-dependent immune regulation through post-transcriptional regulation of mRNAs highlighting its role in the regulation of inflammatory disease.


Assuntos
Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , RNA Longo não Codificante , Humanos , Movimento Celular , Proliferação de Células , Inflamação/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Receptores Citoplasmáticos e Nucleares , RNA Longo não Codificante/metabolismo , Splicing de RNA , Estabilidade de RNA
2.
Front Immunol ; 10: 122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837983

RESUMO

Molecular allergology research has provided valuable information on the structure and function of single allergenic molecules. There are several allergens in food and inhalant allergen sources that are able to interact with lipid ligands via different structural features: hydrophobic pockets, hydrophobic cavities, or specialized domains. For only a few of these allergens information on their associated ligands is already available. Several of the allergens are clinically relevant, so that it is highly probable that the individual structural features with which they interact with lipids have a direct effect on their allergenic potential, and thus on allergy development. There is some evidence for a protective effect of lipids delaying the enzymatic digestion of the peanut (Arachis hypogaea) allergen Ara h 8 (hydrophobic pocket), probably allowing this molecule to get to the intestinal immune system intact (sensitization). Oleosins from different food allergen sources are part of lipid storage organelles and potential marker allergens for the severity of the allergic reaction. House dust mite (HDM), is more often associated with allergic asthma than other sources of inhalant allergens. In particular, lipid-associated allergens from Dermatophagoides pteronyssinus which are Der p 2, Der p 5, Der p 7, Der p 13, Der p 14, and Der p 21 have been reported to be associated with severe allergic reactions and respiratory symptoms such as asthma. The exact mechanism of interaction of these allergens with lipids still has to be elucidated. Apart from single allergens glycolipids have been shown to directly induce allergic inflammation. Several-in parts conflicting-data exist on the lipid (and allergen) and toll-like receptor interactions. For only few single allergens mechanistic studies were performed on their interaction with the air-liquid interface of the lungs, in particular with the surfactant components SP-A and SP-D. The increasing knowledge on protein-lipid-interaction for lipophilic and hydrophobic food and inhalant allergens on the basis of their particular structure, of their capacity to be integral part of membranes (like the oleosins), and their ability to interact with membranes, surfactant components, and transport lipids (like the lipid transfer proteins) are essential to eventually clarify allergy and asthma development.


Assuntos
Alérgenos/metabolismo , Antígenos de Plantas/metabolismo , Asma/imunologia , Proteínas de Transporte/metabolismo , Hipersensibilidade/imunologia , Lipídeos/imunologia , Proteínas de Plantas/metabolismo , Alérgenos/imunologia , Animais , Antígenos de Plantas/imunologia , Proteínas de Transporte/imunologia , Humanos , Metabolismo dos Lipídeos , Proteínas de Plantas/imunologia , Plantas , Proteína A Associada a Surfactante Pulmonar/imunologia , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/imunologia , Proteína D Associada a Surfactante Pulmonar/metabolismo
3.
Allergy ; 74(2): 223-235, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30475385

RESUMO

RNA-sensing Toll-like receptors (TLRs) are often described as antiviral receptors of the innate immune system. However, the past decade has shown that the function and relevance of these receptors are far more complex. They were found to be essential for the detection of various bacterial, archaeal, and eukaryotic microorganisms and facilitate the discrimination between dead and living microbes. The cytokine and interferon response profile that is triggered has the potential to improve the efficacy of next-generation vaccines and may prevent the development of asthma and allergy. Nevertheless, the ability to recognize foreign RNA comes with a cost as also damaged host cells can release nucleic acids that might induce an inappropriate immune response. Thus, it is not surprising that RNA-sensing TLRs play a key role in various autoimmune diseases. However, promising new inhibitors and antagonists are on the horizon to improve their treatment.


Assuntos
RNA/genética , Receptores Toll-Like/metabolismo , Animais , Asma/etiologia , Asma/metabolismo , Autoimunidade , Biomarcadores , Suscetibilidade a Doenças , Endossomos/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Hipersensibilidade/etiologia , Hipersensibilidade/metabolismo , Imunidade Inata , Ligantes , RNA/química , RNA/metabolismo , Relação Estrutura-Atividade , Receptores Toll-Like/química
4.
J Breath Res ; 12(1): 016011, 2017 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-29220343

RESUMO

The particles in exhaled breath provide a promising matrix for the monitoring of pathological processes in the airways, and also allow exposure to exogenous compounds to be to assessed. The collection is easy to perform and is non-invasive. The aim of the present study is to assess if an exogenous compound-methadone-is distributed in the lining fluid of small airways, and to compare two methods for collecting methadone in particles in exhaled breath. Exhaled particles were collected from 13 subjects receiving methadone maintenance treatment. Two different sampling methods were applied: one based on electret filtration, potentially collecting exhaled particles of all sizes, and one based on impaction, collecting particles in the size range of 0.5-7 µm, known to reflect the respiratory tract lining fluid from the small airways. The collected samples were analyzed by liquid chromatography mass spectrometry, and the impact of different breathing patterns was also investigated. The potential contribution from the oral cavity was investigated by rinsing the mouth with a codeine solution, followed by codeine analysis of the collected exhaled particles by both sampling methods. The results showed that methadone was present in all samples using both methods, but when using the method based on impaction, the concentration of methadone in exhaled breath was less than 1% of the concentration collected by the method based on filtration. Optimizing the breathing pattern to retrieve particles from small airways did not increase the amount of exhaled methadone collected by the filtration method. The contamination from codeine present in the oral cavity was only detected in samples collected by the impaction method. We conclude that methadone is distributed in the respiratory tract lining fluid of small airways. The samples collected by the filtration method most likely contained a contribution from the upper airways/oral fluid in contrast to the impaction method.


Assuntos
Testes Respiratórios/métodos , Metadona/análise , Adulto , Cromatografia Líquida , Expiração , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Volatilização , Adulto Jovem
5.
J Allergy Clin Immunol ; 139(2): 667-678.e5, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27544739

RESUMO

BACKGROUND: Bacterial cowshed isolates are allergy protective in mice; however, the underlying mechanisms are largely unknown. We examined the ability of Lactococcus lactis G121 to prevent allergic inflammatory reactions. OBJECTIVE: We sought to identify the ligands and pattern recognition receptors through which L lactis G121 confers allergy protection. METHODS: L lactis G121-induced cytokine release and surface expression of costimulatory molecules by untreated or inhibitor-treated (bafilomycin and cytochalasin D) human monocyte-derived dendritic cells (moDCs), bone marrow-derived mouse dendritic cells (BMDCs), and moDC/naive CD4+ T-cell cocultures were analyzed by using ELISA and flow cytometry. The pathology of ovalbumin-induced acute allergic airway inflammation after adoptive transfer of BMDCs was examined by means of microscopy. RESULTS: L lactis G121-treated murine BMDCs and human moDCs released TH1-polarizing cytokines and induced TH1 T cells. Inhibiting phagocytosis and endosomal acidification in BMDCs or moDCs impaired the release of TH1-polarizing cytokines, costimulatory molecule expression, and T-cell activation on L lactis G121 challenge. In vivo allergy protection mediated by L lactis G121 was dependent on endosomal acidification in dendritic cells (DCs). Toll-like receptor (Tlr) 13-/- BMDCs showed a weak response to L lactis G121 and were unresponsive to its RNA. The TH1-polarizing activity of L lactis G121-treated human DCs was blocked by TLR8-specific inhibitors, mediated by L lactis G121 RNA, and synergistically enhanced by activation of nucleotide-binding oligomerization domain-containing protein (NOD) 2. CONCLUSION: Bacterial RNA is the main driver of L lactis G121-mediated protection against experimentally induced allergy and requires both bacterial uptake by DCs and endosomal acidification. In mice L lactis G121 RNA signals through TLR13; however, the most likely intracellular receptor in human subjects is TLR8.


Assuntos
Antígenos de Bactérias/imunologia , Células Dendríticas/imunologia , Endossomos/metabolismo , Lactococcus lactis/imunologia , Pulmão/imunologia , Hipersensibilidade a Leite/imunologia , RNA Bacteriano/imunologia , Animais , Bovinos , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hipersensibilidade a Leite/prevenção & controle , Proteína Adaptadora de Sinalização NOD2/metabolismo , Células Th1/imunologia , Receptor 8 Toll-Like/antagonistas & inibidores , Receptores Toll-Like/genética
6.
Glycobiology ; 21(12): 1588-95, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21666273

RESUMO

It was established in a mouse model that the cowshed Gram-positive bacterium Lactococcus lactis G121 modulates the immune system resulting in allergy protection. However, the molecules and mechanisms involved in this process have not been elucidated yet. Lipoteichoic acids (LTAs) represent one major cell envelope component of Gram-positive bacteria that is considered a pathogen-associated molecular pattern. In the investigations presented here, the isolation as well as the structural and functional analyses of the LTA of L. lactis G121 were performed. Extraction with butan-1-ol and purification by hydrophobic interaction chromatography yielded pure LTA. Structural investigations included chemical analytical methods, nuclear magnetic resonance spectroscopy and high-resolution electrospray ionization Fourier-transformed ion cyclotron mass spectrometry. LTA comprised a heterogeneous mixture of molecules composed of a 1,3-linked poly(glycerol phosphate) backbone which was randomly substituted at C-2 by D-alanine and α-D-galactopyranose. The lipid anchor constituents were kojibiose linked to a heterogeneous diglyceride comprising in total six different fatty acid compositions. This LTA preparation possesses Toll-like receptor 2- (TLR2) and TLR4-independent cytokine-inducing activities in human mononuclear cells.


Assuntos
Citocinas/metabolismo , Hipersensibilidade/prevenção & controle , Lactococcus lactis/química , Lactococcus lactis/imunologia , Lipopolissacarídeos/metabolismo , Ácidos Teicoicos/metabolismo , Receptor 2 Toll-Like/metabolismo , Células HEK293 , Humanos , Hipersensibilidade/imunologia , Lactococcus lactis/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/química , Ácidos Teicoicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA