Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(6): 1885-1899, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36794528

RESUMO

Plants influence numerous soil biotic factors that can alter the performance of later growing plants-defined as plant-soil feedback (PSF). Here, we investigate whether PSF effects are linked with the temporal changes in root exudate diversity and the rhizosphere microbiome of two common grassland species (Holcus lanatus and Jacobaea vulgaris). Both plant species were grown separately establishing conspecific and heterospecific soils. In the feedback phase, we determined plant biomass, measured root exudate composition, and characterised rhizosphere microbial communities weekly (eight time points). Over time, we found a strong negative conspecific PSF on J. vulgaris in its early growth phase which changed into a neutral PSF, whereas H. lanatus exhibited a more persistent negative PSF. Root exudate diversity increased considerably over time for both plant species. Rhizosphere microbial communities were distinct in conspecific and heterospecific soils and showed strong temporal patterns. Bacterial communities converged over time. Using path models, PSF effects could be linked to the temporal dynamics of root exudate diversity, whereby shifts in rhizosphere microbial diversity contributed to temporal variation in PSF to a lesser extent. Our results highlight the importance of root exudates and rhizosphere microbial communities in driving temporal changes in the strength of PSF effects.


Assuntos
Microbiota , Rizosfera , Solo , Microbiologia do Solo , Retroalimentação , Raízes de Plantas/microbiologia , Plantas , Exsudatos e Transudatos
2.
Proc Biol Sci ; 289(1984): 20221178, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36196543

RESUMO

Global warming and precipitation extremes (drought or increased precipitation) strongly affect plant primary production and thereby terrestrial ecosystem functioning. Recent syntheses show that combined effects of warming and precipitation extremes on plant biomass are generally additive, while individual experiments often show interactive effects, indicating that combined effects are more negative or positive than expected based on the effects of single factors. Here, we examined whether variation in biomass responses to single and combined effects of warming and precipitation extremes can be explained by plant growth form and community type. We performed a meta-analysis of 37 studies, which experimentally crossed warming and precipitation treatments, to test whether biomass responses to combined effects of warming and precipitation extremes depended on plant woodiness and community type (monocultures versus mixtures). Our results confirmed that the effects of warming and precipitation extremes were overall additive. However, combined effects of warming and drought on above- and belowground biomass were less negative in woody- than in herbaceous plant systems and more negative in plant mixtures than in monocultures. We further show that drought effects on plant biomass were more negative in greenhouse, than in field studies, suggesting that greenhouse experiments may overstate drought effects in the field. Our results highlight the importance of plant system characteristics to better understand plant responses to climate change.


Assuntos
Secas , Ecossistema , Biomassa , Mudança Climática , Plantas
3.
Nat Commun ; 12(1): 5686, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584090

RESUMO

Plant-soil feedbacks are shaped by microbial legacies that plants leave in the soil. We tested the persistence of these legacies after subsequent colonization by the same or other plant species using 6 typical grassland plant species. Soil fungal legacies were detectable for months, but the current plant effect on fungi amplified in time. By contrast, in bacterial communities, legacies faded away rapidly and bacteria communities were influenced strongly by the current plant. However, both fungal and bacterial legacies were conserved inside the roots of the current plant species and their composition significantly correlated with plant growth. Hence, microbial soil legacies present at the time of plant establishment play a vital role in shaping plant growth even when these legacies have faded away in the soil due the growth of the current plant species. We conclude that soil microbiome legacies are reversible and versatile, but that they can create plant-soil feedbacks via altering the endophytic community acquired during early ontogeny.


Assuntos
Endófitos/fisiologia , Microbiota/fisiologia , Raízes de Plantas/microbiologia , Poaceae/crescimento & desenvolvimento , Microbiologia do Solo , Biologia Computacional , Pradaria , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/microbiologia
4.
BMC Plant Biol ; 21(1): 402, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470613

RESUMO

BACKGROUND: Plant-parasitic nematodes and herbivorous insects have a significant negative impact on global crop production. A successful approach to protect crops from these pests is the in planta expression of nematotoxic or entomotoxic proteins such as crystal proteins from Bacillus thuringiensis (Bt) or plant lectins. However, the efficacy of this approach is threatened by emergence of resistance in nematode and insect populations to these proteins. To solve this problem, novel nematotoxic and entomotoxic proteins are needed. During the last two decades, several cytoplasmic lectins from mushrooms with nematicidal and insecticidal activity have been characterized. In this study, we tested the potential of Marasmius oreades agglutinin (MOA) to furnish Arabidopsis plants with resistance towards three economically important crop pests: the two plant-parasitic nematodes Heterodera schachtii and Meloidogyne incognita and the herbivorous diamondback moth Plutella xylostella. RESULTS: The expression of MOA does not affect plant growth under axenic conditions which is an essential parameter in the engineering of genetically modified crops. The transgenic Arabidopsis lines showed nearly complete resistance to H. schachtii, in that the number of female and male nematodes per cm root was reduced by 86-91 % and 43-93 % compared to WT, respectively. M. incognita proved to be less susceptible to the MOA protein in that 18-25 % and 26-35 % less galls and nematode egg masses, respectively, were observed in the transgenic lines. Larvae of the herbivorous P. xylostella foraging on MOA-expression lines showed a lower relative mass gain (22-38 %) and survival rate (15-24 %) than those feeding on WT plants. CONCLUSIONS: The results of our in planta experiments reveal a robust nematicidal and insecticidal activity of the fungal lectin MOA against important agricultural pests which may be exploited for crop protection.


Assuntos
Aglutininas/farmacologia , Arabidopsis/parasitologia , Herbivoria , Marasmius/química , Nematoides/fisiologia , Aglutininas/química , Animais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mariposas/fisiologia , Doenças das Plantas/prevenção & controle , Plantas Geneticamente Modificadas
5.
J Chem Ecol ; 47(10-11): 889-906, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34415498

RESUMO

How climate change will modify belowground tritrophic interactions is poorly understood, despite their importance for agricultural productivity. Here, we manipulated the three major abiotic factors associated with climate change (atmospheric CO2, temperature, and soil moisture) and investigated their individual and joint effects on the interaction between maize, the banded cucumber beetle (Diabrotica balteata), and the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora. Changes in individual abiotic parameters had a strong influence on plant biomass, leaf wilting, sugar concentrations, protein levels, and benzoxazinoid contents. Yet, when combined to simulate a predicted climate scenario (Representative Concentration Pathway 8.5, RCP 8.5), their effects mostly counter-balanced each other. Only the sharp negative impact of drought on leaf wilting was not fully compensated. In both current and predicted scenarios, root damage resulted in increased leaf wilting, reduced root biomass, and reconfigured the plant sugar metabolism. Single climatic variables modulated the herbivore performance and survival in an additive manner, although slight interactions were also observed. Increased temperature and CO2 levels both enhanced the performance of the insect, but elevated temperature also decreased its survival. Elevated temperatures and CO2 further directly impeded the EPN infectivity potential, while lower moisture levels improved it through plant- and/or herbivore-mediated changes. In the RCP 8.5 scenario, temperature and CO2 showed interactive effects on EPN infectivity, which was overall decreased by 40%. We conclude that root pest problems may worsen with climate change due to increased herbivore performance and reduced top-down control by biological control agents.


Assuntos
Mudança Climática , Besouros/fisiologia , Cadeia Alimentar , Strongyloidea/fisiologia , Zea mays/fisiologia , Animais , Besouros/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Zea mays/crescimento & desenvolvimento
6.
Ecol Lett ; 23(6): 973-982, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32266749

RESUMO

Soil legacy effects are commonly highlighted as drivers of plant community dynamics and species co-existence. However, experimental evidence for soil legacy effects of conditioning plant communities on responding plant communities under natural conditions is lacking. We conditioned 192 grassland plots using six different plant communities with different ratios of grasses and forbs and for different durations. Soil microbial legacies were evident for soil fungi, but not for soil bacteria, while soil abiotic parameters did not significantly change in response to conditioning. The soil legacies affected the composition of the succeeding vegetation. Plant communities with different ratios of grasses and forbs left soil legacies that negatively affected succeeding plants of the same functional type. We conclude that fungal-mediated soil legacy effects play a significant role in vegetation assembly of natural plant communities.


Assuntos
Pradaria , Solo , Fungos , Plantas , Microbiologia do Solo
7.
Nat Ecol Evol ; 4(3): 393-405, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32094542

RESUMO

The continuing loss of global biodiversity has raised questions about the risk that species extinctions pose for the functioning of natural ecosystems and the services that they provide for human wellbeing. There is consensus that, on single trophic levels, biodiversity sustains functions; however, to understand the full range of biodiversity effects, a holistic and multitrophic perspective is needed. Here, we apply methods from ecosystem ecology that quantify the structure and dynamics of the trophic network using ecosystem energetics to data from a large grassland biodiversity experiment. We show that higher plant diversity leads to more energy stored, greater energy flow and higher community-energy-use efficiency across the entire trophic network. These effects of biodiversity on energy dynamics were not restricted to only plants but were also expressed by other trophic groups and, to a similar degree, in aboveground and belowground parts of the ecosystem, even though plants are by far the dominating group in the system. The positive effects of biodiversity on one trophic level were not counteracted by the negative effects on adjacent levels. Trophic levels jointly increased the performance of the community, indicating ecosystem-wide multitrophic complementarity, which is potentially an important prerequisite for the provisioning of ecosystem services.


Assuntos
Ecossistema , Pradaria , Biodiversidade , Ecologia , Humanos , Plantas
8.
mBio ; 10(6)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848279

RESUMO

Microorganisms are found everywhere and have critical roles in most ecosystems, but compared to plants and animals, little is known about their temporal dynamics. Here, we investigated the temporal stability of bacterial and fungal communities in the soil and how their temporal variation varies between grasses and forb species. We established 30 outdoor mesocosms consisting of six plant monocultures and followed microbial communities for an entire year in these soils. We demonstrate that bacterial communities vary greatly over time and that turnover plays an important role in shaping microbial communities. We further show that bacterial communities rapidly shift from one state to another and that this is related to changes in the relative contribution of certain taxa rather than to extinction. Fungal soil communities are more stable over time, and a large part of the variation can be explained by plant species and by whether they are grasses or forbs. Our findings show that the soil bacterial community is shaped by time, while plant group and plant species-specific effects drive soil fungal communities. This has important implications for plant-soil research and highlights that temporal dynamics of soil communities cannot be ignored in studies on plant-soil feedback and microbial community composition and function.IMPORTANCE Our findings highlight how soil fungal and bacterial communities respond to time, season, and plant species identity. We found that succession shapes the soil bacterial community, while plant species and the type of plant species that grows in the soil drive the assembly of soil fungal communities. Future research on the effects of plants on soil microbes should take into consideration the relative roles of both time and plant growth on creating soil legacies that impact future plants growing in the soil. Understanding the temporal (in)stability of microbial communities in soils will be crucial for predicting soil microbial composition and functioning, especially as plant species compositions will shift with global climatic changes and land-use alterations. As fungal and bacterial communities respond to different environmental cues, our study also highlights that the selection of study organisms to answer specific ecological questions is not trivial and that the timing of sampling can greatly affect the conclusions made from these studies.


Assuntos
Bactérias/classificação , Fungos/classificação , Micobioma , Poaceae/fisiologia , Microbiologia do Solo , Simbiose , Biodiversidade , Temperatura
9.
Sci Rep ; 7: 44641, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28374800

RESUMO

Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity increases substrate availability for soil biota, several studies have speculated that the quantity and diversity of root inputs into the soil, i.e. though root exudates, drive plant diversity effects on soil biota. Here we used a microcosm experiment to study the role of plant species richness on the biomass of soil bacteria and fungi as well as fungal-to-bacterial ratio via root biomass and root exudates. Plant diversity significantly increased shoot biomass, root biomass, the amount of root exudates, bacterial biomass, and fungal biomass. Fungal biomass increased most with increasing plant diversity resulting in a significant shift in the fungal-to-bacterial biomass ratio at high plant diversity. Fungal biomass increased significantly with plant diversity-induced increases in root biomass and the amount of root exudates. These results suggest that plant diversity enhances soil microbial biomass, particularly soil fungi, by increasing root-derived organic inputs.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Fungos/isolamento & purificação , Poaceae/microbiologia , Microbiologia do Solo , Solo/química , Bactérias/classificação , Benzaldeídos/isolamento & purificação , Benzaldeídos/metabolismo , Biomassa , Ácidos Carboxílicos/isolamento & purificação , Ácidos Carboxílicos/metabolismo , Fungos/classificação , Glucosídeos/isolamento & purificação , Glucosídeos/metabolismo , Consórcios Microbianos/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Poaceae/classificação , Poaceae/fisiologia , Estilbenos/isolamento & purificação , Simbiose/fisiologia
10.
PLoS One ; 11(11): e0166349, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27870864

RESUMO

Flooding frequency is predicted to increase during the next decades, calling for a better understanding of impacts on terrestrial ecosystems and for developing strategies to mitigate potential damage. Plant diversity is expected to buffer flooding effects by providing a broad range of species' responses. Here we report on the response of soil processes to a severe summer flood in 2013, which affected major parts of central Europe. We compared soil microbial respiration, biomass, nutrient limitation and enzyme activity in a grassland biodiversity experiment in Germany before flooding, one week and three months after the flood. Microbial biomass was reduced in the severely flooded plots at high, but not at low plant functional group richness. Flooding alleviated microbial nitrogen limitation, presumably due the input of nutrient-rich sediments. Further, the activity of soil enzymes including 1,4-ß-N-acetylglucosaminidase, phenol oxidase and peroxidase increased with flooding severity, suggesting increased chitin and lignin degradation as a consequence of the input of detritus in sediments. Flooding effects were enhanced at higher plant diversity, indicating that plant diversity temporarily reduces stability of soil processes during flooding. The long-term impacts, however, remain unknown and deserve further investigation.


Assuntos
Bactérias/classificação , Plantas/classificação , Microbiologia do Solo , Bactérias/crescimento & desenvolvimento , Biodiversidade , Biomassa , Inundações , Alemanha , Pradaria , Fixação de Nitrogênio
11.
BMC Ecol ; 16: 19, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27056681

RESUMO

BACKGROUND: Several studies have examined the effects of plant colonization on aboveground communities and processes. However, the effects of plant colonization on soil microbial communities are less known. We addressed this gap by studying effects of plant colonization within an experimental plant diversity gradient in subplots that had not been weeded for 2 and 5 years. This study was part of a long-term grassland biodiversity experiment (Jena Experiment) with a gradient in plant species richness (1, 2, 4, 8, 16, and 60 sown species per plot). We measured plant species richness and productivity (aboveground cover and biomass) as well as soil microbial basal respiration and biomass in non-weeded subplots and compared the results with those of weeded subplots of the same plots. RESULTS: After 2 and 5 years of plant colonization, the number of colonizing plant species decreased with increasing plant diversity, i.e., low-diversity plant communities were most vulnerable to colonization. Plant colonization offset the significant relationship between sown plant diversity and plant biomass production. In line with plant community responses, soil basal respiration and microbial biomass increased with increasing sown plant diversity in weeded subplots, but soil microbial properties converged in non-weeded subplots and were not significantly affected by the initial plant species richness gradient. CONCLUSION: Colonizing plant species change the quantity and quality of inputs to the soil, thereby altering soil microbial properties. Thus, plant community convergence is likely to be rapidly followed by the convergence of microbial properties in the soil.


Assuntos
Biodiversidade , Fenômenos Fisiológicos Vegetais , Microbiologia do Solo , Especificidade da Espécie
12.
Ecol Evol ; 6(20): 7387-7396, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-28725406

RESUMO

Higher plant diversity is often associated with higher soil microbial biomass and diversity, which is assumed to be partly due to elevated root exudate diversity. However, there is little experimental evidence that diversity of root exudates shapes soil microbial communities. We tested whether higher root exudate diversity enhances soil microbial biomass and diversity in a plant diversity gradient, thereby negating significant plant diversity effects on soil microbial properties. We set up plant monocultures and two- and three-species mixtures in microcosms using functionally dissimilar plants and soil of a grassland biodiversity experiment in Germany. Artificial exudate cocktails were added by combining the most common sugars, organic acids, and amino acids found in root exudates. We applied four different exudate cocktails: two exudate diversity levels (low- and high-diversity) and two nutrient-enriched levels (carbon- and nitrogen-enriched), and a control with water only. Soil microorganisms were more carbon- than nitrogen-limited. Cultivation-independent fingerprinting analysis revealed significantly different soil microbial communities among exudate diversity treatments. Most notably and according to our hypothesis, adding diverse exudate cocktails negated the significant plant diversity effect on soil microbial properties. Our findings provide the first experimental evidence that root exudate diversity is a crucial link between plant diversity and soil microorganisms.

13.
Ecol Evol ; 5(19): 4300-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26664680

RESUMO

Soil food webs comprise a multitude of trophic interactions that can affect the composition and productivity of plant communities. Belowground predators feeding on microbial grazers like Collembola could decelerate nutrient mineralization by reducing microbial turnover in the soil, which in turn could negatively influence plant growth. However, empirical evidences for the ecological significance of belowground predators on nutrient cycling and plant communities are scarce. Here, we manipulated predator density (Hypoaspis aculeifer: predatory mite) with equal densities of three Collembola species as a prey in four functionally dissimilar plant communities in experimental microcosms: grass monoculture (Poa pratensis), herb monoculture (Rumex acetosa), legume monoculture (Trifolium pratense), and all three species as a mixed plant community. Density manipulation of predators allowed us to test for density-mediated effects of belowground predators on Collembola and lower trophic groups. We hypothesized that predator density will reduce Collembola population causing a decrease in nutrient mineralization and hence detrimentally affect plant growth. First, we found a density-dependent population change in predators, that is, an increase in low-density treatments, but a decrease in high-density treatments. Second, prey suppression was lower at high predator density, which caused a shift in the soil microbial community by increasing the fungal: bacterial biomass ratio, and an increase of nitrification rates, particularly in legume monocultures. Despite the increase in nutrient mineralization, legume monocultures performed worse at high predator density. Further, individual grass shoot biomass decreased in monocultures, while it increased in mixed plant communities with increasing predator density, which coincided with elevated soil N uptake by grasses. As a consequence, high predator density significantly increased plant complementarity effects indicating a decrease in interspecific plant competition. These results highlight that belowground predators can relax interspecific plant competition by increasing nutrient mineralization through their density-dependent cascading effects on detritivore and soil microbial communities.

14.
Ecology ; 96(1): 99-112, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26236895

RESUMO

Anthropogenic changes in biodiversity and atmospheric temperature significantly influence ecosystem processes. However, little is known about potential interactive effects of plant diversity and warming on essential ecosystem properties, such as soil microbial functions and element cycling. We studied the effects of orthogonal manipulations of plant diversity (one, four, and 16 species) and warming (ambient, +1.5 degrees C, and +3 degrees C) on soil microbial biomass, respiration, growth after nutrient additions, and activities of extracellular enzymes in 2011 and 2012 in the BAC (biodiversity and climate) perennial grassland experiment site at Cedar Creek, Minnesota, USA. Focal enzymes are involved in essential biogeochemical processes of the carbon, nitrogen, and phosphorus cycles. Soil microbial biomass and some enzyme activities involved in the C and N cycle increased significantly with increasing plant diversity in both years. In addition, 16-species mixtures buffered warming induced reductions in topsoil water content. We found no interactive effects of plant diversity and warming on soil microbial biomass and growth rates. However, the activity of several enzymes (1,4-beta-glucosidase, 1,4-beta-N-acetylglucosaminidase, phosphatase, peroxidase) depended on interactions between plant diversity and warming with elevated activities of enzymes involved in the C, N, and P cycles at both high plant diversity and high warming levels. Increasing plant diversity consistently decreased microbial biomass-specific enzyme activities and altered soil microbial growth responses to nutrient additions, indicating that plant diversity changed nutrient limitations and/or microbial community composition. In contrast to our expectations, higher plant diversity only buffered temperature effects on soil water content, but not on microbial functions. Temperature effects on some soil enzymes were greatest at high plant diversity. In total, our results suggest that the fundamental temperature ranges of soil microbial communities may be sufficiently broad to buffer their functioning against changes in temperature and that plant diversity may be a dominant control of soil microbial processes in a changing world.


Assuntos
Biodiversidade , Mudança Climática , Enzimas/análise , Plantas , Microbiologia do Solo , Biomassa , Temperatura Alta , Solo/química
15.
Glob Chang Biol ; 21(11): 4076-85, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26118993

RESUMO

Soil microbial biomass is a key determinant of carbon dynamics in the soil. Several studies have shown that soil microbial biomass significantly increases with plant species diversity, but it remains unclear whether plant species diversity can also stabilize soil microbial biomass in a changing environment. This question is particularly relevant as many global environmental change (GEC) factors, such as drought and nutrient enrichment, have been shown to reduce soil microbial biomass. Experiments with orthogonal manipulations of plant diversity and GEC factors can provide insights whether plant diversity can attenuate such detrimental effects on soil microbial biomass. Here, we present the analysis of 12 different studies with 14 unique orthogonal plant diversity × GEC manipulations in grasslands, where plant diversity and at least one GEC factor (elevated CO2 , nutrient enrichment, drought, earthworm presence, or warming) were manipulated. Our results show that higher plant diversity significantly enhances soil microbial biomass with the strongest effects in long-term field experiments. In contrast, GEC factors had inconsistent effects with only drought having a significant negative effect. Importantly, we report consistent non-significant effects for all 14 interactions between plant diversity and GEC factors, which indicates a limited potential of plant diversity to attenuate the effects of GEC factors on soil microbial biomass. We highlight that plant diversity is a major determinant of soil microbial biomass in experimental grasslands that can influence soil carbon dynamics irrespective of GEC.


Assuntos
Biodiversidade , Mudança Climática , Pradaria , Plantas , Microbiologia do Solo , Biomassa , Carbono/metabolismo , Secas
16.
Nat Commun ; 6: 6092, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25600177

RESUMO

The natural world is increasingly defined by change. Within the next 100 years, rising atmospheric CO2 concentrations will continue to increase the frequency and magnitude of extreme weather events. Simultaneously, human activities are reducing global biodiversity, with current extinction rates at ~1,000 × what they were before human domination of Earth's ecosystems. The co-occurrence of these trends may be of particular concern, as greater biological diversity could help ecosystems resist change during large perturbations. We use data from a 200-year flood event to show that when a disturbance is associated with an increase in resource availability, the opposite may occur. Flooding was associated with increases in productivity and decreases in stability, particularly in the highest diversity communities. Our results undermine the utility of the biodiversity-stability hypothesis during a large number of disturbances where resource availability increases. We propose a conceptual framework that can be widely applied during natural disturbances.


Assuntos
Biodiversidade , Plantas , Ecossistema , Tempo (Meteorologia)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA