Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(28): e202301969, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37066813

RESUMO

While most nanoproteomics approaches for the analysis of low-input samples are based on bottom-up proteomics workflows, top-down approaches enabling proteoform characterization are still underrepresented. Using mammalian cell proteomes, we established a facile one-pot sample preparation protocol based on protein aggregation on magnetic beads and intact proteoform elution using 40 % formic acid. Performed on a digital microfluidics device, the workflow enabled sensitive analyses of single Caenorhabditis elegans nematodes, thereby increasing the number of proteoform identifications compared to in-tube sample preparation by 46 %. Label-free quantification of single nematodes grown under different conditions allowed to identify changes in the abundance of proteoforms not distinguishable by bottom-up proteomics. The presented workflow will facilitate proteoform-directed analysis on samples of limited availability.


Assuntos
Caenorhabditis elegans , Microfluídica , Animais , Caenorhabditis elegans/metabolismo , Proteoma/análise , Proteômica/métodos , Fenômenos Magnéticos , Mamíferos/metabolismo
2.
J Proteome Res ; 21(8): 1986-1996, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35771142

RESUMO

Miniaturization of sample preparation, including omissible manual sample handling steps, is key for reproducible nanoproteomics, as material is often restricted to only hundreds of cells or single model organisms. Here, we demonstrate a highly sensitive digital microfluidics (DMF)-based sample preparation workflow making use of single-pot solid-phase enhanced sample preparation (SP3) in combination with high-field asymmetric-waveform ion mobility spectrometry (FAIMS), and fast and sensitive ion trap detection on an Orbitrap tribrid MS system. Compared to a manual in-tube SP3-supported sample preparation, the numbers of identified peptides and proteins were markedly increased, while lower standard deviations between replicates were observed. We repeatedly identified up to 5000 proteins from single nematodes. Moreover, label-free quantification of protein changes in single Caenorhabditis elegans treated with a heat stimulus yielded 45 differentially abundant proteins when compared to the untreated control, highlighting the potential of this technology for low-input proteomics studies. LC-MS data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD033143.


Assuntos
Caenorhabditis elegans , Proteoma , Animais , Espectrometria de Mobilidade Iônica/métodos , Microfluídica , Proteoma/análise , Proteômica/métodos
3.
Anal Chem ; 93(15): 6278-6286, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33823593

RESUMO

Digital microfluidics (DMF) is a technology suitable for bioanalytical applications requiring miniaturized, automated, and multiplexed liquid handling. Its use in LC-MS-based proteomics, however, has so far been limited to qualitative proteome analyses. This is mainly due to the need for detergents that enable facile, reproducible droplet movement, which are compatible with organic solvents commonly used in targeted chemical modifications of peptides. Aiming to implement isobaric peptide labeling, a widely applied technique allowing multiplexed quantitative proteome studies, on DMF devices, we tested different commercially available detergents. We identified the maltoside-based detergent 3-dodecyloxypropyl-1-ß-d-maltopyranoside (DDOPM) to enable facile droplet movement and show micelle formation even in the presence of organic solvent, which is necessary for isobaric tandem mass tag (TMT) labeling. The detergent is fully compatible with reversed phase LC-MS, not interfering with peptide identification. Tryptic digestion in the presence of DDOPM was more efficient than without detergent, resulting in more protein identifications. Using this detergent, we report the first on-DMF chip isobaric labeling strategy, with TMT-labeling efficiency comparable to conventional protocols. The newly developed labeling protocol was evaluated in the multiplexed analyses of a protein standard digest spiked into 25 cells. Finally, using only 75 cells per biological replicate, we were able to identify 39 proteins being differentially abundant after treatment of Jurkat T cells with the anticancer drug doxorubicin. In summary, we demonstrate an important step toward multiplexed quantitative proteomics on DMF, which, in combination with larger chip arrays and optimized hardware, could enable high throughput low cell number proteomics.


Assuntos
Microfluídica , Proteômica , Contagem de Células , Humanos , Peptídeos , Proteoma , Espectrometria de Massas em Tandem
4.
Proc Natl Acad Sci U S A ; 114(18): 4591-4596, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28408395

RESUMO

Currently, cell separation occurs almost exclusively by density gradient methods and by fluorescence- and magnetic-activated cell sorting (FACS/MACS). These variously suffer from lack of specificity, high cell loss, use of labels, and high capital/operating cost. We present a dielectrophoresis (DEP)-based cell-separation method, using 3D electrodes on a low-cost disposable chip; one cell type is allowed to pass through the chip whereas the other is retained and subsequently recovered. The method advances usability and throughput of DEP separation by orders of magnitude in throughput, efficiency, purity, recovery (cells arriving in the correct output fraction), cell losses (those which are unaccounted for at the end of the separation), and cost. The system was evaluated using three example separations: live and dead yeast; human cancer cells/red blood cells; and rodent fibroblasts/red blood cells. A single-pass protocol can enrich cells with cell recovery of up to 91.3% at over 300,000 cells per second with >3% cell loss. A two-pass protocol can process 300,000,000 cells in under 30 min, with cell recovery of up to 96.4% and cell losses below 5%, an effective processing rate >160,000 cells per second. A three-step protocol is shown to be effective for removal of 99.1% of RBCs spiked with 1% cancer cells while maintaining a processing rate of ∼170,000 cells per second. Furthermore, the self-contained and low-cost nature of the separator device means that it has potential application in low-contamination applications such as cell therapies, where good manufacturing practice compatibility is of paramount importance.


Assuntos
Separação Celular/métodos , Eletroforese/métodos , Fenômenos Eletrofisiológicos , Eritrócitos/citologia , Neoplasias/patologia , Saccharomyces cerevisiae/citologia , Linhagem Celular Tumoral , Separação Celular/economia , Eletroforese/economia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA