RESUMO
The present work reports the inhibitory effect of amides derived from gallic acid (gallamides) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro), along with cytotoxicity evaluation and molecular docking studies. In addition to gallamides, other relevant compounds were also synthesized and evaluated against Mpro, making a total of 25 compounds. Eight compounds presented solubility issues during the inhibitory assay and one showed no inhibitory activity. Compounds 3a, 3b, and 3f showed the highest enzymatic inhibition with IC50 = 0.26 ± 0.19 µM, 0.80 ± 0.38 µM, and 2.87 ± 1.17 µM, respectively. Selenogallamide 6a exhibited IC50 values of 5.42 ± 2.89 µM and a comparison with its nonselenylated congener 3c shows that the insertion of the chalcogen moiety improved the inhibitory capacity of the compound by approximately 10 times. Regarding the cellular toxicity in THP-1 and Vero cells, compounds 3e and 3g, showed moderate cytotoxicity in Vero cells, while for THP-1 both were nontoxic, with CC50 > 150 µM. Derivative 3d showed moderate cytotoxicity against both cell lines, whereas 6d was moderatly toxic to THP-1. Other compounds analyzed do not induce substantial cellular toxicity at the concentrations tested. The molecular docking results for compounds 3a, 3b, and 3f show that hydrogen bonding interactions involving the hydroxyl groups (OH) of the gallate moiety are relevant, as well as the carbonyl group.
RESUMO
Natural pigments have received special attention from the market and industry as they could overcome the harm to health and the environmental issues caused by synthetic pigments. These pigments are commonly extracted from a wide range of organisms, and when added to products they can alter/add new physical-chemical or biological properties to them. Fungi from extreme environments showed to be a promising source in the search for biomolecules with antimicrobial and antiparasitic potential. This study aimed to isolate fungi from Antarctic soils and screen them for pigment production with antimicrobial and antiparasitic potential, together with other previously isolated strains A total of 52 fungi were isolated from soils in front of the Collins Glacier (Southeast border). Also, 106 filamentous fungi previously isolated from the Collins Glacier (West border) were screened for extracellular pigment production. Five strains were able to produce extracellular pigments and were identified by ITS sequencing as Talaromyces cnidii, Pseudogymnoascus shaanxiensis and Pseudogymnoascus sp. All Pseudogymnoascus spp. (SC04.P3, SC3.P3, SC122.P3 and ACF093) extracts were able to inhibit S. aureus ATCC6538 and two (SC12.P3, SC32.P3) presented activity against Leishmania (L.) infantum, Leishmania amazonensis and Trypanossoma cruzii. Extracts compounds characterization by UPLC-ESI-QToF analysis confirmed the presence of molecules with biological activity such as: Asterric acid, Violaceol, Mollicellin, Psegynamide A, Diorcinol, Thailandolide A. In conclusion, this work showed the potential of Antartic fungal strains from Collins Glacier for bioactive molecules production with activity against Gram positive bacteria and parasitic protozoas.
Assuntos
Antiparasitários , Pigmentos Biológicos , Regiões Antárticas , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/biossíntese , Antiparasitários/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Fungos/efeitos dos fármacos , Fungos/metabolismo , Fungos/classificação , Microbiologia do Solo , Bactérias/efeitos dos fármacos , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/genética , Testes de Sensibilidade Microbiana , Animais , Staphylococcus aureus/efeitos dos fármacosRESUMO
The mangrove ecosystem plays a crucial role in preserving the biodiversity of plants, animals, and microorganisms that are essential for materials cycles. However, the exploration of endophytic fungi isolated from mangroves, particulary in Santa Catarina (SC, Brazil), remains limited. Therefore, the purpose of this study was to assess the biodiversity of endophytic fungi found in Avicennia schaueriana, Laguncularia racemosa, Rhizophora mangle, and Spartina alterniflora from two mangroves on the Island of Santa Catarina: one impacted by anthropic action (Itacorubi mangrove) and the other environmentally preserved (Ratones mangrove). Samplings were carried out between January 2020 and May 2021. Fungi were isolated from leaves, stems, and roots, identified, and clustered into groups through morphological characteristics. Further, a representative strain of each group was identified through ITS1 sequencing. A total of 373 isolates were obtained from plant tissues, of which 96 and 277 isolates were obtained from Itacorubi and Ratones mangroves, respectively. Molecular identification showed that the endophytic fungal community comprised at least 19 genera. The data on fungal community diversity revealed comparable diversity indices for genera in both mangroves. However, we observed differences in the total frequency of fungal genera between impacted (27.38%) and non-impacted (72.62%) mangroves. These findings suggest that anthropic activities in and around the Santa Catarina mangroves have had negative impact on the frequency of endophytic fungi. This emphasizes the reinforcing the significance of preserving these environments to ensure the maintenance of fungal community diversity.
Assuntos
Biodiversidade , Endófitos , Fungos , Filogenia , Rhizophoraceae , Áreas Alagadas , Endófitos/classificação , Endófitos/isolamento & purificação , Endófitos/genética , Brasil , Fungos/classificação , Fungos/isolamento & purificação , Fungos/genética , Rhizophoraceae/microbiologia , Avicennia/microbiologia , Ilhas , Raízes de Plantas/microbiologia , Micobioma , Folhas de Planta/microbiologiaRESUMO
The discovery of biomolecules has been the subject of extensive research for several years due to their potential to combat harmful pathogens that can lead to environmental contamination and infections in both humans and animals. This study aimed to identify the chemical profile of endophytic fungi, namely Neofusicoccum parvum and Buergenerula spartinae, which were isolated from Avecinnia schaueriana and Laguncularia racemosa. We identified several HPLC-MS compounds, including Ethylidene-3,39-biplumbagin, Pestauvicolactone A, Phenylalanine, 2-Isopropylmalic acid, Fusaproliferin, Sespendole, Ansellone, Calanone derivative, Terpestacin, and others. Solid-state fermentation was conducted for 14-21 days, and methanol and dichloromethane extraction were performed to obtain a crude extract. The results of our cytotoxicity assay revealed a CC50 value > 500 µg/mL, while the virucide, Trypanosoma, leishmania, and yeast assay demonstrated no inhibition. Nevertheless, the bacteriostatic assay showed a 98% reduction in Listeria monocytogenes and Escherichia coli. Our findings suggest that these endophytic fungi species with distinct chemical profiles represent a promising niche for further exploring new biomolecules.
RESUMO
SARS-CoV-2 main protease (Mpro ) plays an essential role in proteolysis cleavage that promotes coronavirus replication. Thus, attenuating the activity of this enzyme represents a strategy to develop antiviral agents. We report inhibitory effects against Mpro of 40 synthetic chalcones, and cytotoxicity activities, hemolysis, and in silico interactions of active compounds. Seven of them bearing a (E)-3-(furan-2-yl)-1-arylprop-2-en-1-one skeleton (10, 28, and 35-39) showed enzyme inhibition with IC50 ranging from 13.76 and 36.13â µM. Except for 35 and 36, other active compounds were not cytotoxic up to 150â µM against THP-1 and Vero cell lines. Compounds 10, and 35-39 showed no hemolysis while 28 was weakly hemotoxic at 150â µM. Moreover, molecular docking showed interactions between compound 10 and Mpro (PDBID 5RG2 and 5RG3) with proximity to cys145 and His41, suggesting a covalent binding. Products of the reaction between chalcones and cyclohexanethiol indicated that this binding could be a Michael addition type.
Assuntos
COVID-19 , Chalconas , Humanos , SARS-CoV-2 , Simulação de Acoplamento Molecular , Chalconas/farmacologia , Chalconas/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Antivirais/farmacologia , Antivirais/química , Simulação de Dinâmica MolecularRESUMO
Chemical scaffolds of natural products have historically been sources of inspiration for the development of novel molecules of biological relevance, including hit and lead compounds. To identify new compounds active against Trypanosoma cruzi, we designed and synthesized 46 synthetic derivatives based on the structure of two classes of natural products: tetrahydrofuran lignans (Series 1) and oxazole alkaloids (Series 2). Compounds were screened in vitro using a cellular model of T. cruzi infection. In the first series of compounds, 11 derivatives of hit compound 5 (EC50 = 1.1 µM) were found to be active; the most potent (7, 8, and 13) had EC50 values of 5.1-34.2 µM. In the second series, 17 analogs were found active at 50 µM; the most potent compounds (47, 49, 59, and 63) showed EC50 values of 24.2-49.1 µM. Active compounds were assessed for selectivity, hemocompatibility, synergistic potential, effects on mitochondrial membrane potential, and inhibitory effect on trypanothione reductase. All active compounds showed low toxicity against uninfected THP-1 cells and human erythrocytes. The potency of compounds 5 and 8 increased steadily in combination with benznidazole, indicating a synergistic effect. Furthermore, compounds 8, 47, 49, 59, and 63 inhibited parasitic mitochondria in a dose-dependent manner. Although increased reactive oxygen species levels might lead to mitochondrial effects, the results indicate that the mechanism of action of the compounds is not dependent on trypanothione reductase inhibition. In silico calculation of chemical descriptors and principal component analysis showed that the active compounds share common chemical features with other trypanocidal molecules and are predicted to have a good ADMET profile. Overall, the results suggest that the compounds are important candidates to be further studied for their potential against T. cruzi.
Assuntos
Produtos Biológicos/farmacologia , Desenho de Fármacos , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Alcaloides/síntese química , Alcaloides/química , Alcaloides/farmacologia , Produtos Biológicos/síntese química , Produtos Biológicos/química , Relação Dose-Resposta a Droga , Furanos/síntese química , Furanos/química , Furanos/farmacologia , Humanos , Lignanas/síntese química , Lignanas/química , Lignanas/farmacologia , Estrutura Molecular , Oxazóis/síntese química , Oxazóis/química , Oxazóis/farmacologia , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/químicaRESUMO
Mangroves are ecosystems with unique characteristics due to the high salinity and amount of organic matter that house a rich biodiversity. Fungi have aroused much interest as they are an important natural source for the discovery of new bioactive compounds, with potential biotechnological and pharmacological interest. This review aims to highlight endophytic fungi isolated from mangrove plant species and the isolated bioactive compounds and their bioactivity against protozoa, bacteria and pathogenic viruses. Knowledge about this type of ecosystem is of great relevance for its preservation and as a source of new molecules for the control of pathogens that may be of importance for human, animal and environmental health.
RESUMO
Human trypanosomiases and animal trypanosomoses are caused by distinct protozoan parasites of the genus Trypanosoma. The etiological agents of bovine trypanosomosis (BT) are T. vivax, T. congolense, or T. brucei, whose acute infections are initially characterized by hyperthermia, following moderate to severe anemia, subcutaneous edema, lethargy, reduced milk production, progressive weight loss, enlarged lymph nodes, reproductive disorders and death. Animals that survive the acute phase might recover and progress to the chronic, often asymptomatic, phase of infection. Despite their low sensitivity due to the characteristic low parasitemia, simple and costless direct parasitological examinations are the preferred diagnostic methods for animals. Thus, most of the epidemiological studies of BT are based on serological techniques using crude antigen. In this study, we describe the use of the MyxoTLm recombinant protein as an antigen on serological assays. Anti-T. vivax IgM and anti-T. vivax IgG ELISA assays using purified MyxoTLm revealed specificity rates of 91.30 % and 95.65 % and sensitivity rates of 82.35 % and 88.23 %, respectively, being higher than reported for crude antigens. Also, MyxoTLm demonstrated a good performance to detect IgM (ROC curve area = 0.8568) and excellent performance to detect IgG (ROC curve area = 0.9565) when compared to a crude antigen. T. evansi crude antigen used in the indirect anti-T. vivax IgM ELISA reached 70.58 % sensitivity and 78.26 % specificity, and had a lower test performance (ROC curve area = 0.7363). When applied to the anti-T. vivax IgG ELISA, the crude antigen reached 82.35 % sensitivity and 69.56 % specificity, also presenting a low performance with area under the ROC curve of 0.7570. Therefore, the use of MyxoTLm as an antigen on serological diagnosis of BT revealed to increase the sensitivity and the specificity if compared to crude antigens.
Assuntos
Antígenos de Protozoários , Doenças dos Bovinos , Proteínas Recombinantes , Tripanossomíase Bovina , Animais , Antígenos de Protozoários/metabolismo , Bovinos , Doenças dos Bovinos/diagnóstico , Ensaio de Imunoadsorção Enzimática/veterinária , Proteínas Recombinantes/metabolismo , Trypanosoma vivax/imunologia , Tripanossomíase Bovina/diagnósticoRESUMO
Cutaneous leishmaniasis is a worldwide public health problem. Conventional therapies, in addition to the high cost, have many adverse effects and cases of parasite's resistance. Chalcones are secondary metabolites precursors in the flavonoid pathway and can be obtained naturally, but with low yield from plant raw material. Thus, the use of synthetic chalcones has been a promising strategy for the development of molecules with leishmanicidal activity. Thus, this work aimed to develop a controlled release system of two synthetic chalcone (trans-chalcones and 3'-(trifluormethyl)-chalcone) using polyvinyl alcohol nanofibers (PVA) as scaffold. The association of chalcones to the nanofibers was made by nanoemulsions (NE) thereof, i.e., a colloidal system on a nanometric scale, which allows compounds with opposite polarities to remain miscible and stable throughout their manipulation. Chalcone nanoemulsions were developed using the spontaneous emulsification technique. The NE were characterized regarding their particle size, polydispersion index (PDI), and zeta potential. The results showed NE with spherical shape, absolute values of zeta potential were higher than 30 mV and homogeneous distribution pattern (PDI < 0.3). Dynamics light scattering (DLS) analysis showed similar hydrodynamic rays, i.e., 180 nm (trans-chalcone NE) and 178 nm (NE containing 3'-(trifluormethyl)-chalcone, in addition to presenting encapsulation efficiency values close to 100 %. Subsequently, the NE were added to a polymeric solution of polyvinyl alcohol (PVA) and processed via the electrospinning technique affording a PVA matrix (15 %, w/v) nanofiber containing the chalcones NE at 1 mg.mL-1. In a follow-up experiment, the skin permeation assay of the PVA matrix-chalcone NE was performed in vitro using Franz type diffusion cells and porcine ear as biological model of study. The results showed that the treatments with the nanofibers containing the chalcone NE were retained mainly in the stratum corneum, while the NE suspensions containing chalcone were retained in the epidermis and dermis. This result is thought to be relevant, since parasites are located mainly in the dermis. Further, in vitro assay against the amastigote form of L. (L) amazonensis, showed IC50 values to trans-chalcone and 3'-(trifluormethyl)-chalcone of 24.42 ± 6.76 µg.mL-1 and 15.36 ± 4.61 µg.mL-1, respectively. In addition to improving the solubility of the compounds tested in culture medium without using organic solvents, chalcones in nano-emulsified form reduced the IC50 to 9.09 ± 1.24 µg.mL-1 (trans-chalcone) and 10.27 ± 2.27 µg.mL-1 (3'-(trifluormethyl)-chalcone) which confirmed the potential of the nanoemulsion containing chalcone for cutaneous leishmaniasis treatment.
Assuntos
Chalcona , Chalconas , Leishmania , Leishmaniose Cutânea , Animais , Álcool de Polivinil , SuínosRESUMO
The drugs currently used to treat leishmaniases have limitations concerning cost, efficacy, and safety, making the search for new therapeutic approaches urgent. We found that the gold(I)-derived complexes were active against L. infantum and L. braziliensis intracellular amastigotes with IC50 values ranging from 0.5 to 5.5 µM. All gold(I) complexes were potent inhibitors of trypanothione reductase (TR), with enzyme IC50 values ranging from 1 to 7.8 µM. Triethylphosphine-derived complexes enhanced reactive oxygen species (ROS) production and decreased mitochondrial respiration after 2 h of exposure, indicating that gold(I) complexes cause oxidative stress by direct ROS production, by causing mitochondrial damage or by impairing TR activity and thus accumulating ROS. There was no cross-resistance to antimony; in fact, SbR (antimony-resistant mutants) strains were hypersensitive to some of the complexes. BALB/c mice infected with luciferase-expressing L. braziliensis or L. amazonensis and treated orally with 12.5 mg/kg/day of AdT Et (3) or AdO Et (4) presented reduced lesion size and parasite burden, as revealed by bioimaging. The combination of (3) and miltefosine allowed for a 50% reduction in miltefosine treatment time. Complexes 3 and 4 presented favorable pharmacokinetic and toxicity profiles that encourage further drug development studies. Gold(I) complexes are promising antileishmanial agents, with a potential for therapeutic use, including in leishmaniasis caused by antimony-resistant parasites.
Assuntos
Antiprotozoários/farmacologia , Ouro/farmacologia , Leishmaniose , NADH NADPH Oxirredutases/antagonistas & inibidores , Animais , Leishmaniose/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Estresse OxidativoRESUMO
Serodiagnosis of Leishmania infantum infection in dogs relies on the detection of antibodies against leishmanial crude extracts or parasitic defined antigens. The expansion of canine leishmaniasis from geographical areas of Brazil in which the infection is endemic to regions in which the disease is emerging is occurring. This fact makes necessary the analysis of the serodiagnostic capabilities of different leishmanial preparations in distinct geographical locations. In this article sera from dogs infected with Leishmania and showing the clinical form of the disease, were collected in three distinct Brazilian States and were tested against soluble leishmanial antigens or seven parasite individual antigens produced as recombinant proteins. We show that the recognition of soluble leishmanial antigens by sera from these animals was influenced by the geographical location of the infected dogs. Efficacy of the diagnosis based on this crude parasite preparation was higher in newly endemic regions when compared with areas of high disease endemicity. We also show that the use of three of the recombinant proteins, namely parasite surface kinetoplastid membrane protein of 11â¯kDa (KMP-11), and two members of the P protein family (P2a and P0), can improve the degree of sensitivity without adversely affecting the specificity of the diagnostic assays for canine leishmaniasis, independently of the geographical area of residence. In addition, sera from dogs clinically healthy but infected were also assayed with some of the antigen preparations. We demonstrate that the use of these proteins can help to the serodiagnosis of Leishmania infected animals with subclinical infections. Finally, we propose a diagnostic protocol using a combination of KMP-11, P2a y P0, together with total leishmanial extracts.
RESUMO
Banana inflorescences are a byproduct of banana cultivation consumed in various regions of Brazil as a non-conventional food. This byproduct represents an alternative food supply that can contribute to the resolution of nutritional problems and hunger. This product is also used in Asia as a traditional remedy for the treatment of various illnesses such as bronchitis and dysentery. However, there is a lack of chemical and pharmacological data to support its consumption as a functional food. Therefore, this work aimed to study the anti-inflammatory action of Musa acuminata blossom by quantifying the cytokine levels (NOx, IL-1ß, TNF-α, and IL-6) in peritoneal neutrophils, and to study its antiparasitic activities using the intracellular forms of T. cruzi, L. amazonensis, and L. infantum. This work also aimed to establish the chemical profile of the inflorescence using UPLC-ESI-MS analysis. Flowers and the crude bract extracts were partitioned in dichloromethane and n-butanol to afford four fractions (FDCM, FNBU, BDCM, and BNBU). FDCM showed moderate trypanocidal activity and promising anti-inflammatory properties by inhibiting IL-1ß, TNF-α, and IL-6. BDCM significantly inhibited the secretion of TNF-α, while BNBU was active against IL-6 and NOx. LCMS data of these fractions revealed an unprecedented presence of arylpropanoid sucroses alongside flavonoids, triterpenes, benzofurans, stilbenes, and iridoids. The obtained results revealed that banana inflorescences could be used as an anti-inflammatory food ingredient to control inflammatory diseases.
Assuntos
1-Butanol/farmacologia , Anti-Inflamatórios/farmacologia , Cloreto de Metileno/farmacologia , Musa/química , Tripanossomicidas/farmacologia , 1-Butanol/química , Animais , Anti-Inflamatórios/química , Sobrevivência Celular/efeitos dos fármacos , Flores/química , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Leishmania/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Cloreto de Metileno/química , Camundongos , NADPH Oxidases/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Células THP-1 , Tripanossomicidas/química , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Aristolochia triangularis Cham., is one of the most frequently used medicinal plant in Southern Brazil. Preparations containing the leaves and/or stems are traditionally used as anti-inflammatory, diuretic, as well as antidote against snakebites. This study screened A. triangularis extracts, fractions and isolated compounds for different bioactivities. A weak antiproliferative activity against human lung cancer cell line (A549) was observed only for chloroform fraction obtained from stems (CFstems - CC50: 2.93 µg/mL). Also, a moderate antimicrobial activity against Staphylococcus aureus was detected just for chloroform fraction obtained from leaves (CFleaves -13-16 mm inhibition zone). Additionally, two semi-purified fractions (CFstems-4 and CFleaves-4) selectively inhibited HSV-1 replication (IC50 values of 0.40 and 2.61 µg/mL, respectively), while only CFleaves showed promising results against Leishmania amazonensis. Fractionation of extracts resulted in the isolation of one neolignan (-) cubebin and one lignan (+) galbacin. However, these compounds are not responsible for the in vitro bioactivities herein detected. The presence of aristolochic acid I and aristolochic acid II in the crude ethanol extract of stems (CEEstems) and leaves (CEEleaves) was also investigated. The HPLC analysis of these extracts did not display any peak with retention time or UV spectra comparable to aristolochic acids I and II.
Assuntos
Aristolochia/química , Compostos Fitoquímicos/química , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antiprotozoários/farmacologia , Antivirais/farmacologia , Ácidos Aristolóquicos/química , Brasil , Fracionamento Químico , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologiaRESUMO
BACKGROUND: Chagas disease is a potentially life-threatening disease caused by the protozoan parasite Trypanosoma cruzi. Current therapeutic management is limited to treatment with nitroheterocyclic drugs, such as nifurtimox (NFX) and benznidazole (BZ). Thus, the identification of affordable and readily available drugs to treat resistant parasites is urgently required worldwide. To analyse the effects of BZ on human macrophage gene expression, a quantitative PCR (qPCR) array analysis was performed using drug transporter and oxidative stress pathway genes to compare the gene expression profiles of human differentiated THP-1 macrophage (THP-1 MΦ) cells infected or not with benznidazole-sensitive (CL Brener) and naturally benznidazole-resistant (Colombiana) T. cruzi parasites followed by treatment with BZ. RESULTS: The gene expression analysis indicated that the expression levels of 62 genes were either up- or downregulated at least 3-fold in the host upon infection with CL Brener and BZ treatment, of which 46 were upregulated and 16 were downregulated. Moreover, the expression level of 32 genes was altered in THP-1 MФ cells infected with Colombiana and treated with BZ, of which 29 were upregulated and 3 were downregulated. Our results revealed that depending on the specific condition, human THP-1 MΦ cells infected with T. cruzi strains with sensitive or resistant phenotypes and treated with BZ expressed high mRNA levels of AQP1, AQP9 and ABCB1 (MDR1) compared to those of the control cells. CONCLUSIONS: Our findings suggest that the proteins encoded by AQP1, AQP9 and ABCB1 may be implicated in benznidazole detoxification. Therefore, studies on gene expression are required to better understand the host response to pathogens and drug treatment integrated with functional and metabolic data to identify potentially novel targets for the treatment of this important and neglected tropical disease.
Assuntos
Resistência a Medicamentos , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Nitroimidazóis/farmacologia , Estresse Oxidativo , Trypanosoma cruzi/efeitos dos fármacos , DNA de Protozoário/genética , Expressão Gênica , Humanos , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Células THP-1RESUMO
The study aims to evaluate the antiprotozoal activities of 20 plant metabolites on Trypanosoma cruzi and Leishmania amazonensis amastigotes. Compounds 1-20 were obtained and identified by using chromatographic and spectroscopic techniques. The antiparasitic assays were performed on the intracellular form of T. cruzi and L. amazonensis using human leukaemic THP-1 cells as the host. The mechanism of action of the most active compounds was explored in silico by molecular docking using T. cruzi trypanothione reductase (TR) as a target, whereas the in vitro studies were performed by enzymatic assay using T. cruzi recombinant TR. In addition, the mitochondrial membrane potential was evaluated by flow cytometry. Two flavonoids, one triterpene and three acetogenins showed from high to moderate trypanocidal activities with IC50 values ranging 3.6-37.2 µm while three of the metabolites were moderately leishmanicidal. The molecular docking study revealed interactions between TR and the most trypanocidal compounds 1 (abyssinone IV) and 2 (atalantoflavone). In contrast, both showed no effect on TR in vitro. For the mitochondrial membrane potential assay, atalantoflavone (2) displayed a dose-dependent depolarization. On the basis of the aforementioned results, this compound's structure could be chemically explored in order to develop more potent trypanocidal derivatives.
Assuntos
Antiprotozoários/farmacologia , Flavonas/farmacologia , Leishmania mexicana/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Extratos Vegetais/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Antiprotozoários/química , Flavonas/química , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Monócitos/efeitos dos fármacos , Monócitos/parasitologia , Extratos Vegetais/química , Plantas/química , Células THP-1RESUMO
BACKGROUND: Curry powder is a blend of spices that is extensively consumed worldwide and mainly in Central Asia. Its preparation is strictly related to each locality and, because of the health benefits of its constituents, eight commercial forms of this condiment were biologically and chemically investigated. This study aimed to compare their chemical profile as well as their anti-inflammatory, cytotoxic, and antiparasitic activities. RESULTS: Curry samples 1 and 7 inhibited leukocyte influx and myeloperoxidase activity, while only 7 was active on protein exudate and NOx species. 2, 6, and 8 displayed trypanocidal effect against Trypanosoma cruzi amastigote, whereas 6 showed antileishmanial activity on Leishmania amazonensis amastigote. 2, 6, and 8 also inhibited the growth of THP-1 cells used as the parasite's host. Among the cytotoxic samples (4 and 6), curry sample 6 induced apoptosis in MDA-MB-231 cells. Nevertheless, 4 and 6 were unselectively cytotoxic to non-tumoral and tumoral cells. The anti-inflammatory, cytotoxicity, and antiparasitic assays were respectively performed by carrageenan-induced pleurisy test, Alamar blue assay, and intracellular parasite-host cell model. Ultra-performance liquid chromatographic-electrospray ionization mass spectrometric data from the spices revealed both similar and different metabolites in their composition. CONCLUSION: The results obtained indicate that different formulations can contribute different health benefits as a result of their chemical composition. © 2018 Society of Chemical Industry.
Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antiprotozoários/química , Antiprotozoários/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Especiarias/análise , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Humanos , Leishmania/efeitos dos fármacos , Leishmania/crescimento & desenvolvimento , Pleurisia/tratamento farmacológico , Pleurisia/imunologia , Pós/química , Espectrometria de Massas por Ionização por Electrospray , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/crescimento & desenvolvimentoRESUMO
The current paucity of effective and affordable drugs for the treatment of leishmaniasis renders the search for new therapeutic alternatives a priority. Gallic acid-related compounds display anti-parasitic activities and their incorporation into drug carrier systems, such as polymeric nanoparticles may be a viable alternative for leishmaniasis treatment. Therefore, this study focused on the synthesis and characterization of octyl gallate (G8) loaded poly(methyl methacrylate) (PMMA) nanoparticles via miniemulsion polymerization in order to increase the leishmanicidal activity of this compound. G8 loaded PMMA nanoparticles presented a spherical morphology with a mean size of 108 nm, a negatively charged surface (-33 ± 5 mV) and high encapsulation efficiency (83% ± 5). Fourier-transform infrared spectroscopy and X-ray diffraction analysis confirmed that G8 was encapsulated in PMMA nanoparticles and presented a biphasic release profile. The G8 loaded PMMA nanoparticles did not present cytotoxic effect on human red blood cells. G8 loaded PMMA nanoparticles displayed a leishmanicidal activity almost three times higher than free G8 while the cytotoxic activity against human THP-1 cells remained unchanged.
Assuntos
Portadores de Fármacos/química , Ácido Gálico/análogos & derivados , Leishmania/efeitos dos fármacos , Polimetil Metacrilato/química , Tripanossomicidas/administração & dosagem , Tripanossomicidas/farmacologia , Células CACO-2 , Linhagem Celular , Liberação Controlada de Fármacos , Emulsões/química , Ácido Gálico/administração & dosagem , Ácido Gálico/química , Ácido Gálico/farmacologia , Hemólise/efeitos dos fármacos , Humanos , Leishmaniose/tratamento farmacológico , Nanopartículas/química , Nanopartículas/ultraestrutura , Tripanossomicidas/químicaRESUMO
Despite the impressive scientific and technological advances of recent decades, no effective treatment is currently available for Chagas disease. Our research group has been studying the design and synthesis of analogues of natural lignans aiming to identify compounds with antiparasitic activity. This article reports the synthesis of 42 novel bis-heterocyclic derivatives and the structure-activity relationship study conducted based on results of biological assays against Trypanosoma cruzi amastigotes. Thirty-seven compounds were active, and eight of them had GI50 values lower than 100⯵M (GI50 88.4-12.2⯵M). A qualitative structure activity relationship study using three dimensional descriptors was carried out and showed a correlation between growth inhibitory potency and the presence of bulky hydrophobic groups located at rings A and D of the compounds. Compound 3-(3,4-dimethoxyphenyl)-5-((4-(4-pentylphenyl)-1H-1,2,3-triazol-1-yl)methyl)isoxazole (31) was the most active in the series (GI50 12.2⯵M), showing, in vitro, low toxicity and potency similar to benznidazole (GI50 10.2⯵M). These results suggest that this compound can be a promising scaffold for the design of new trypanocidal compounds.
Assuntos
Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Lignanas/química , Trypanosoma cruzi/efeitos dos fármacos , Antiprotozoários/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Avaliação Pré-Clínica de Medicamentos , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Isoxazóis/síntese química , Isoxazóis/química , Isoxazóis/farmacologia , NADH NADPH Oxirredutases/antagonistas & inibidores , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Infravermelho , Relação Estrutura-Atividade , Células THP-1 , Triazóis/síntese química , Triazóis/química , Triazóis/farmacologiaRESUMO
In this study we report the synthesis, characterization, biological evaluation, and druglikeness assessment of a series of 20 novel isoxazolyl-sulfonamides, obtained by a four-step synthetic route. The compounds had their activity against Trypanosoma cruzi, Leishmania amazonensis, Herpes Simplex Virus type 1 and cytotoxicity evaluated in phenotypic assays. All compounds have drug-like properties, showed low cytotoxicity and were promising regarding all other biological activities reported herein, especially the inhibitory activity against T. cruzi. The compounds 8 and 16 showed significant potency and selectivity against T. cruzi (GI50â¯=â¯14.3⯵M, SIâ¯>â¯34.8 and GI50â¯=â¯11.6⯵M, SIâ¯=â¯29.1, respectively). These values, close to the values of the reference drug benznidazole (GI50â¯=â¯10.2⯵M), suggest that compounds 8 and 16 represent promising candidates for further pre-clinical development targeting Chagas disease.
Assuntos
Antivirais/farmacologia , Isoxazóis/farmacologia , Sulfonamidas/farmacologia , Tripanossomicidas/farmacologia , Animais , Antivirais/síntese química , Antivirais/química , Antivirais/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Humanos , Isoxazóis/síntese química , Isoxazóis/química , Isoxazóis/toxicidade , Leishmania/efeitos dos fármacos , Estrutura Molecular , Simplexvirus/efeitos dos fármacos , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/toxicidade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Tripanossomicidas/toxicidade , Trypanosoma cruzi/efeitos dos fármacos , Células VeroRESUMO
Mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is characterized by its well-defined clinical profile. Limbic encephalitis is increasingly recognized as a possible etiology of adult-onset MTLE-HS, and neuronal autoantibodies have been detected in patients even without previous signs of encephalitis. The aim of this study is to analyze the frequency of specific autoantibodies in patients with MTLE-HS. A case-control study was carried out with 100 patients with MTLE-HS and 50 healthy controls. Sera samples from subjects were tested by indirect immunofluorescence assay for detection of anti-N-methyl-d-aspartate receptor (NMDA-R), anti-contactin-associated protein-like 2 (CASPR2), anti-leucine-rich glioma inactivated 1 (LGI1), anti-gamma aminobutyric acid B receptor (GABA-B-R), anti-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 1 and 2 receptors (AMPA-1-R and AMPA-2-R), and enzyme-linked immunosorbent assay for detection of anti-glutamic acid decarboxylase 65 (GAD65). Mean age of patients and controls was 41.2 vs 42 years, and 55% vs 56% were female. Mean duration of epilepsy was 27.2 years. No neuronal autoantibodies were found in either group, except for anti-GAD65 in 3 patients and 2 controls. This study adds to the mounting evidence that, in Brazilian patients, MTLE-HS without signs and symptoms of autoimmune encephalitis may be infrequently associated with these autoantibodies. Differences regarding accuracy of used methodologies for autoantibody detection and genetic and environmental characteristics are discussed. Further works with different methodologies tested simultaneously in different populations may help clarify the incongruent study results about autoantibodies in MTLE-HS.