Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(8): e1009835, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34432856

RESUMO

Intracellular parasites of the phylum Apicomplexa are dependent on the scavenging of essential amino acids from their hosts. We previously identified a large family of apicomplexan-specific plasma membrane-localized amino acid transporters, the ApiATs, and showed that the Toxoplasma gondii transporter TgApiAT1 functions in the selective uptake of arginine. TgApiAT1 is essential for parasite virulence, but dispensable for parasite growth in medium containing high concentrations of arginine, indicating the presence of at least one other arginine transporter. Here we identify TgApiAT6-1 as the second arginine transporter. Using a combination of parasite assays and heterologous characterisation of TgApiAT6-1 in Xenopus laevis oocytes, we demonstrate that TgApiAT6-1 is a general cationic amino acid transporter that mediates both the high-affinity uptake of lysine and the low-affinity uptake of arginine. TgApiAT6-1 is the primary lysine transporter in the disease-causing tachyzoite stage of T. gondii and is essential for parasite proliferation. We demonstrate that the uptake of cationic amino acids by TgApiAT6-1 is 'trans-stimulated' by cationic and neutral amino acids and is likely promoted by an inwardly negative membrane potential. These findings demonstrate that T. gondii has evolved overlapping transport mechanisms for the uptake of essential cationic amino acids, and we draw together our findings into a comprehensive model that highlights the finely-tuned, regulated processes that mediate cationic amino acid scavenging by these intracellular parasites.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Aminoácidos Essenciais/metabolismo , Fibroblastos/metabolismo , Oócitos/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasmose/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Animais , Arginina/metabolismo , Transporte Biológico , Fibroblastos/parasitologia , Humanos , Lisina/metabolismo , Oócitos/parasitologia , Proteínas de Protozoários/genética , Toxoplasma/fisiologia , Toxoplasmose/parasitologia , Xenopus laevis
2.
PLoS Pathog ; 17(8): e1009816, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34352043

RESUMO

Intracellular parasites, such as the apicomplexan Toxoplasma gondii, are adept at scavenging nutrients from their host. However, there is little understanding of how parasites sense and respond to the changing nutrient environments they encounter during an infection. TgApiAT1, a member of the apicomplexan ApiAT family of amino acid transporters, is the major uptake route for the essential amino acid L-arginine (Arg) in T. gondii. Here, we show that the abundance of TgApiAT1, and hence the rate of uptake of Arg, is regulated by the availability of Arg in the parasite's external environment, increasing in response to decreased [Arg]. Using a luciferase-based 'biosensor' strain of T. gondii, we demonstrate that the expression of TgApiAT1 varies between different organs within the host, indicating that parasites are able to modulate TgApiAT1-dependent uptake of Arg as they encounter different nutrient environments in vivo. Finally, we show that Arg-dependent regulation of TgApiAT1 expression is post-transcriptional, mediated by an upstream open reading frame (uORF) in the TgApiAT1 transcript, and we provide evidence that the peptide encoded by this uORF is critical for mediating regulation. Together, our data reveal the mechanism by which an apicomplexan parasite responds to changes in the availability of a key nutrient.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Arginina/metabolismo , Regulação da Expressão Gênica , Proteínas de Protozoários/metabolismo , Toxoplasma/fisiologia , Toxoplasmose/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Animais , Transporte Biológico , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/genética , Toxoplasmose/genética , Toxoplasmose/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA