Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 7794, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179418

RESUMO

Biological treatment of cereal straw for ruminant nutrition purposes might present an environmentally friendly option of valorizing a widely available by-product of grain production for farming systems with low external input. Several strains of white-rot fungi have been selected in the past under mostly controlled laboratory conditions for their capacity of lignin degradation. The study adapted to conditions on farm for upscaling purposes. The development of the in vitro straw digestibility with two different moistening pre-treatments and inoculated with three different fungi species, namely Pleurotus ostreatus, Ceriporiopsis subvermispora and Volvariella volvacea, was determined up to 42 days of fermentation with five sampling times. The effect of physical straw pre-treatments on nutritional parameters was evaluated. The neutral detergent fiber digestibility (NDFD30h), enzymatically soluble organic substance (ELOS) and the gas production (Hohenheim Feed value Test, HFT) as indicators for in vitro ruminal degradability decreased over time independent of the fungus: HFT, ELOS and NDFD30h by up to 50, 35 and 30% of the original straw. Remoistening and autoclaving the straw increased the gas production significantly by 2.6 mL/200 g dry matter (DM), and ELOS and NDFD30h by 45 and 51 g/kg DM compared to the original straw (34.9 mL/200 mg DM, 342 g/kg DM, 313 g/kg NDF).


Assuntos
Pleurotus , Triticum , Animais , Triticum/metabolismo , Fazendas , Ração Animal/análise , Ruminantes , Pleurotus/metabolismo , Agricultura , Fermentação , Rúmen/metabolismo , Digestão
2.
Sci Rep ; 12(1): 20530, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36446835

RESUMO

The development of strategies to overcome the shortage of forage due to persistently low rainfall is becoming a central task for animal nutrition in research and practice. In this study, it was investigated how the treatment of straw with NaOH or feed urea in a practicable procedure for modern farms affects rumen fermentation (gas production and greenhouse gas concentration) as well as the digestibility of feed energy and nutrients. For this purpose, the treatments were tested individually and in different proportions in a total mixed ration (TMR) in ruminal batch cultures in vitro and in a digestibility trial with sheep. In order to explain the observed effects at the molecular level, descriptive data from 13C solid state nuclear magnetic resonance (NMR) and Fourier-transform infrared (FTIR) spectroscopy were obtained. NaOH treatment of straw increased crude ash (CA), non-fibrous carbohydrates, digestible energy (DE), and metabolizable energy (ME) concentration, whereas the proportion of neutral detergent fibre (aNDFom) and hemicellulose decreased. In urea treated straw, NH3-N and crude protein increased, whereas acid detergent lignin (ADL), DE, and ME decreased. The physically effective fibre (peNDF8) concentration increased in TMR containing 18% of NaOH or urea treated straw (p < 0.01). The application of straw treatments as pure substrates (not as part of a TMR) increased gas production and decelerated ruminal fermentation (p < 0.05). In vitro organic matter digestibility (IVOMD) of the straw (0.31) increased after NaOH (0.51; p < 0.05) and urea treatment (0.41; p > 0.05). As part of a TMR, straw treatments had no distinct effect on gas production or IVOMD. Concentrations of CH4 and CO2 were likewise not affected. Apparent total tract digestibility of aNDFom, acid detergent fibre (ADFom), hemicellulose, and cellulose increased in the TMR by approximately 10% points following NaOH treatment (p < 0.05). The inclusion of urea treated straw did not affect apparent digestibility. Calculated true digestibility of aNDFom was 0.68, 0.74, and 0.79, of ADFom 0.58, 0.57, and 0.65, and of ADL 0.02, 0.13, and 0.08 in TMR including untreated, NaOH treated, and urea treated straw, respectively. 13C NMR and FTIR analyses consistently revealed that the global structure and crystallinity of the carbohydrates (cellulose and hemicellulose) was not altered by treatment and the concentration of lignin was likewise not affected. Depolymerisation of lignin did not occur. However, NMR signals assigned to acetyl groups were significantly altered indicating that straw treatments disrupted linkages between hemicelluloses and lignin. Moreover, the acetates signal was affected. This signal can be assigned to linkages between ferulic acids and hemicelluloses (arabinoxylans). FTIR spectra of straw treatments mainly differed at a wavelength of 1730 cm-1 and 1240 cm-1. Disappearance of the 1730 cm-1 peak suggests removal of hemicelluloses or lignin related compounds by treatment. The disappearance of the lignin peak at 1240 cm-1 could be due to conjugated ketone (phenyl-carbonyl) removal or the removal of ferulic and p-coumaric acid acetyl groups. Both treatments are supposed to release fermentable cell wall components (hemicelluloses) from lignin-associated bonds and as a result, straw fibre can be better fermented in the rumen. This contributes to energy supply and increased fibre digestibility at least in the TMR that contained NaOH treated straw. The alkaline straw treatments probably induced a release of phenolics such as ferulic acid and p-coumaric acid, which can be metabolised in the gut and the liver and metabolites might be excreted with the urine. This could notably contribute to metabolic energy losses.


Assuntos
Hordeum , Animais , Celulose , Detergentes , Fibras na Dieta , Lignina , Ruminantes , Ovinos , Hidróxido de Sódio , Ureia
3.
Microbiol Spectr ; 10(4): e0095322, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35946942

RESUMO

The present study was conducted under the hypothesis that, in field peas, type of plant material, stage of maturity, ensiling, silage additive, and aerobic stress affect the composition and diversity of epiphytic microbial communities. Epiphytic microbial composition and diversity of pea seeds, partial crop peas, and whole crop peas was analyzed at different stages of late maturity, before and after ensiling, and with or without the use of lactic acid bacteria (LAB) as inoculant. Suitable combinations among pea crop variants, maturity stages, and inoculant use for the production of stable silages with sufficient aerobic stability after opening and during feed-out were identified. Genomic DNA was extracted, and 16S and 18S rRNA gene amplicons were sequenced. To assess the quality of the various silages, nutrient concentration, pH value, concentration of lactic acid, short chain fatty acids, and alcohols, and aerobic stability were determined. Pea seeds were barely colonized by epiphytic microorganisms. In partial and whole crop peas, composition and α-diversity (Shannon index) of bacterial communities did not differ between crop variants but differed among maturity stages. Epiphytic eukaryotes were rarely found on partial and whole crop peas. Bacterial composition and α-diversity were affected by ensiling and subsequent aerobic storage. In partial and whole crop peas, plant maturation caused an increase of the relative abundance of naturally occurring LAB (Weissella, Pediococcus, and Lactobacillus spp.). As a possible result, natural LAB support stable ensiling conditions even without the use of inoculants beginning with a maturity of 78 on the BBCH scale. This corresponded with a dry matter (DM) concentration of 341 and 363 g/kg in partial and whole crop peas, respectively. Addition of LAB inoculants, however, reduced ammonia, acetic acid, and butanol concentrations, and supported aerobic stability. Earlier stages of plant maturity (BBCH 76 and 77, 300 g DM/kg or less) were more prone to microbial spoilage. Stable pea seed silages can be produced at a maturity between BBCH 78 (427 g DM/kg) and 79 (549 g DM/kg), but they undoubtedly require LAB inoculation or application of other ensiling agents. IMPORTANCE Field peas are important protein suppliers for human and animal nutrition. They can be grown in many areas of the world, which may reduce imports of protein plants and has beneficial economic and ecological effects. Ensiling is a method of preserving feed that can be implemented easily and cost-effectively at the farm. Peas harvested as seeds, partial crop, or whole crop at different maturities enable a wide range of applications. The study characterized epiphytic microbial communities on peas in terms of composition and diversity depending on the maturity of the plants and feed conservation by ensiling as they play an essential role for the production of silages. Even if this study did not consider year, site, or cultivar effects, the results would show which part of the plant is probably well suited for the production of stable and high-quality silages and at which stage of maturity.


Assuntos
Inoculantes Agrícolas , Pisum sativum , Inoculantes Agrícolas/metabolismo , Animais , Bactérias/metabolismo , Fermentação , Humanos , Ácido Láctico/metabolismo , Lactobacillus/metabolismo , Pisum sativum/metabolismo , Sementes , Zea mays/química , Zea mays/metabolismo , Zea mays/microbiologia
4.
Anim Nutr ; 6(3): 342-352, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005768

RESUMO

Legume grains such as field peas and field beans can be produced on a local level, and may be reliable sources of dietary protein and energy apart from common soybean and rapeseed meals. In ruminants, protein, starch, and carbohydrates from peas and field beans are fermented in large part before reaching the small intestine. The objective of this study was to evaluate the effects of a combination of ensiling and hydro-thermic treatment (i.e., toasting at 160 °C for 30 min) of grains of peas and field beans on the concentrations of post-ruminal crude protein (PRCP) and rumen-undegraded protein (RUP). Moreover, 24-h gas production and methane production were measured. For this, an in vitro batch culture system with ruminal fluid from sheep was used. Rumen-undegraded protein was determined using the Streptomyces griseus protease test. Scanning electron micrographs were used to visualize morphological changes of starch granules and their joint matrices in peas and field beans after ensiling, toasting, or a combination of both. Native pea grains contained crude protein (CP) at 199 g/kg DM, PRCP at 155 g/kg DM at a ruminal passage rate of 0.08/h (Kp8), RUP at 33 g/kg DM at Kp8, and starch at 530 g/kg DM. Native field beans contained CP at 296 g/kg DM, PRCP at 212 g/kg DM at Kp8, RUP at 54 g of/kg DM at Kp8, and starch at 450 g/kg DM. The PRCP did not considerably differ among native and treated peas or field beans. Especially in the peas, RUP at Kp8 increased after ensiling by 10 g/kg DM (i.e., 30%; P < 0.05). Toasting increased RUP (Kp8) in ensiled peas by another 28% (P < 0.05). Toasting had no effect on PRCP or RUP when the peas or field beans were not ensiled before. Gas and methane production were not affected by any treatment, and scanning electron micrographs did not reveal structural changes on the starches doubtless of any treatment. Protein seemed to be more affected by treatment with ensiled + toasted peas than with ensiled + toasted field beans, but starches and other carbohydrates from both legumes remained unaffected.

5.
Animals (Basel) ; 9(7)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31266144

RESUMO

Pea grains may partially replace soybean or rapeseed meals and cereals in ruminant diets, but substitution by unprocessed peas is limited by high ruminal protein solubility. The effect of combined ensiling and toasting of peas using a mobile toaster (100 kg/h throughput rate, 180 to 190 °C supplied air temperature) on rumen-undegraded protein (RUP) was tested in vitro using the Streptomyces griseus protease test. The effects of ensiling plus toasting on apparent digestibility of organic matter (OM), gross energy (GE), and proximate nutrients were examined in a digestion trial. Concentrations of metabolizable energy (ME) and net energy lactation (NEL) were calculated. Native peas had 38 g RUP/kg dry matter (DM), which was 20% of crude protein (CP). Rumen-undegraded protein increased three-fold after ensiling plus toasting (p < 0.001). Acid detergent insoluble protein increased five-fold. Apparent digestibility was 0.94 (OM), 0.90 (CP), and above 0.99 (nitrogen-free extract, starch, and sugars) and was not altered by the treatment. The ME (13.9 MJ/kg DM) or the NEL (8.9 MJ/kg DM) concentration was similar in native and ensiled plus toasted peas. This technique can easily be applied on farms and may increase RUP. However, it needs to be clarified under which conditions pea protein will be damaged.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA