Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 17(2): e1008695, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529219

RESUMO

A population's spatial structure affects the rate of genetic change and the outcome of natural selection. These effects can be modeled mathematically using the Birth-death process on graphs. Individuals occupy the vertices of a weighted graph, and reproduce into neighboring vertices based on fitness. A key quantity is the probability that a mutant type will sweep to fixation, as a function of the mutant's fitness. Graphs that increase the fixation probability of beneficial mutations, and decrease that of deleterious mutations, are said to amplify selection. However, fixation probabilities are difficult to compute for an arbitrary graph. Here we derive an expression for the fixation probability, of a weakly-selected mutation, in terms of the time for two lineages to coalesce. This expression enables weak-selection fixation probabilities to be computed, for an arbitrary weighted graph, in polynomial time. Applying this method, we explore the range of possible effects of graph structure on natural selection, genetic drift, and the balance between the two. Using exhaustive analysis of small graphs and a genetic search algorithm, we identify families of graphs with striking effects on fixation probability, and we analyze these families mathematically. Our work reveals the nuanced effects of graph structure on natural selection and neutral drift. In particular, we show how these notions depend critically on the process by which mutations arise.


Assuntos
Deriva Genética , Modelos Genéticos , Neoplasias/patologia , Probabilidade , Seleção Genética , Algoritmos , Evolução Biológica , Simulação por Computador , Humanos , Matemática , Mutação , Dinâmica Populacional , Temperatura
2.
PLoS Comput Biol ; 16(1): e1007529, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31951612

RESUMO

The spatial structure of an evolving population affects the balance of natural selection versus genetic drift. Some structures amplify selection, increasing the role that fitness differences play in determining which mutations become fixed. Other structures suppress selection, reducing the effect of fitness differences and increasing the role of random chance. This phenomenon can be modeled by representing spatial structure as a graph, with individuals occupying vertices. Births and deaths occur stochastically, according to a specified update rule. We study death-Birth updating: An individual is chosen to die and then its neighbors compete to reproduce into the vacant spot. Previous numerical experiments suggested that amplifiers of selection for this process are either rare or nonexistent. We introduce a perturbative method for this problem for weak selection regime, meaning that mutations have small fitness effects. We show that fixation probability under weak selection can be calculated in terms of the coalescence times of random walks. This result leads naturally to a new definition of effective population size. Using this and other methods, we uncover the first known examples of transient amplifiers of selection (graphs that amplify selection for a particular range of fitness values) for the death-Birth process. We also exhibit new families of "reducers of fixation", which decrease the fixation probability of all mutations, whether beneficial or deleterious.


Assuntos
Modelos Biológicos , Modelos Estatísticos , Dinâmica Populacional , Seleção Genética , Biologia Computacional , Deriva Genética , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA