Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(7)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37515283

RESUMO

A metagenomic analysis of the virome of honey bees (Apis mellifera) from an apiary with high rates of unexplained colony losses identified a novel RNA virus. The virus, which was named Apis mellifera solinvivirus 1 (AmSV1), contains a 10.6 kb positive-strand genomic RNA with a single ORF coding for a polyprotein with the protease, helicase, and RNA-dependent RNA polymerase domains, as well as a single jelly-roll structural protein domain, showing highest similarity with viruses in the family Solinviviridae. The injection of honey bee pupae with AmSV1 preparation showed an increase in virus titer and the accumulation of the negative-strand of AmSV1 RNA 3 days after injection, indicating the replication of AmSV1. In the infected worker bees, AmSV1 was present in heads, thoraxes, and abdomens, indicating that this virus causes systemic infection. An analysis of the geographic and historic distribution of AmSV1, using over 900 apiary samples collected across the United States, showed AmSV1 presence since at least 2010. In the year 2021, AmSV1 was detected in 10.45% of apiaries (95%CI: 8.41-12.79%), mostly sampled in June and July in Northwestern and Northeastern United States. The diagnostic methods and information on the AmSV1 distribution will be used to investigate the connection of AmSV1 to honey bee colony losses.


Assuntos
Vírus de RNA , Abelhas/genética , Animais , Estados Unidos , Vírus de RNA/genética , Metagenoma , RNA
2.
Transbound Emerg Dis ; 69(2): 579-590, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33544964

RESUMO

Understanding amateur beekeepers' perception of risks affecting bee health and mortality is essential to analyse the reasons for adopting or rejecting good management practices. A perception survey on how beekeepers perceive and manage factors related to climate change, Varroa infestation, management practices, and pesticide exposure was designed and launched online. This unpreceded sociological survey involved 355 beekeepers spread all over Belgium. A two-sample t test with unequal variances comparing beekeepers with colony loss rates below or exceeding the acceptable level, that is <10% and ≥10%, indicates that beekeepers (N = 213) with colony loss rates <10% generally have greater average levels of perceived risks and the benefits of action that lead to increased motivation to act in better ways. The results of this survey highlight the importance of looking beyond socio-economic determinants in any risk mitigation strategy associated with bee mortality when dealing with amateur beekeepers.


Assuntos
Criação de Abelhas , Varroidae , Animais , Criação de Abelhas/métodos , Abelhas , Bélgica/epidemiologia , Percepção , Inquéritos e Questionários
3.
Sci Total Environ ; 799: 149381, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358747

RESUMO

Explaining the reasons for the high honey bee (Apis mellifera) colony loss rate in recent years has become a top global research priority in apicultural and agricultural sciences. Although there are indications of the role played by beekeeping management practices on honey bee health, very little information is currently available. Our study aimed to characterize the beekeeping management practices carried out in Belgium, and to determine the relationship between beekeeping management practices and colony losses. Variables obtained from face-to-face questioning of a representative randomized and stratified sample of Belgian beekeepers (n = 186) were integrated into a logistic regression model (univariate and multivariate) and correlated to the declared colony loss rates to identify risk and protective indicators. We used a classification tree analysis to validate the results. We present evidence of a relationship between poor beekeeping management practices and colony losses. The main factors protecting honey bee colonies are the aptitude of the beekeeper to change his management practices, the hive type, the equipment origin and hygiene, wintering in proper conditions (the use of divider boards, i.e. board blocks or space fillers off part of the hive body), the colony strength estimation before wintering, winter monitoring, and last but not least, appropriate integrated pest management. Proper estimation of the Varroa infestation level should be performed prior to treatment. The consequences of poor beekeeping practices on honey bee health can be addressed by proper training of beekeepers. An online tool was developed and published for beekeepers allowing them to evaluate the effect of their management practices on colony health.


Assuntos
Criação de Abelhas , Varroidae , Animais , Abelhas , Bélgica , Controle de Pragas , Estações do Ano
4.
Environ Pollut ; 279: 116566, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33839524

RESUMO

Honey bees Apis mellifera forage in a wide radius around their colony, bringing back contaminated food resources that can function as terrestrial bioindicators of environmental pesticide exposure. Evaluating pesticide exposure risk to pollinators is an ongoing problem. Here we apply five metrics for pesticide exposure risk (prevalence, diversity, concentration, significant pesticide prevalence, and hazard quotient (HQ)) to a nation-wide field study of honey bees, Apis mellifera in the United States. We examined samples from 1055 apiaries over seven years for 218 different pesticide residues and metabolites, determining that bees were exposed to 120 different pesticide products with a mean of 2.78 per sample. Pesticides in pollen were highly prevalent and variable across states. While pesticide diversity increased over time, most detections occurred at levels predicted to be of low risk to colonies. Varroacides contributed most to concentration, followed by fungicides, while insecticides contributed most to diversity above a toxicity threshold. High risk samples contained one of 12 different insecticides or varroacides. Exposures predicted to be low-risk were nevertheless associated with colony morbidity, and low-level fungicide exposures were tied to queen loss, Nosema infection, and brood diseases.


Assuntos
Inseticidas , Nosema , Resíduos de Praguicidas , Praguicidas , Animais , Abelhas , Inseticidas/análise , Resíduos de Praguicidas/análise , Praguicidas/análise , Pólen/química , Estados Unidos
5.
PLoS One ; 16(1): e0245490, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33449973

RESUMO

Honey bee colony losses in the US have exceeded acceptable levels for at least a decade, leaving beekeepers in need of management practices to improve colony health and survival. Here, an empirical Best Management Practice (BMP) regimen was tested, comprised of the top four management practices associated with reduced colony mortality in backyard beekeeping operations according to Bee Informed Partnership Loss and Management survey results. Seven study locations were established across the US, and each location consisted of ten colonies treated according to empirical BMPs and ten according to average beekeeping practice. After 3 years, colonies treated according to empirical BMPs experienced reduced Varroa infestation, viral infection, and mortality compared to colonies managed with Average practices. In addition, BMP colonies produced more new colonies via splits. The colonies under Average practices were given chemical Varroa treatments only once per year, and thus spent more months above economic threshold of 3.0 mites/100 bees. Increased time spent above the economic threshold was significantly correlated to both increased viral infection and colony mortality. This study demonstrates the cumulative effects of management and colony health stressors over months and years, especially the dire importance of regular Varroa monitoring and management.


Assuntos
Criação de Abelhas/métodos , Abelhas , Mortalidade , Inquéritos e Questionários , Animais , Abelhas/parasitologia , Conservação dos Recursos Naturais , Fatores de Risco , Estações do Ano
6.
Sci Total Environ ; 753: 141629, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33207479

RESUMO

Beekeepers attempt to manage their honey bee colonies in ways that optimize colony health. Disentangling the impact of management from other variables affecting colony health is complicated by the diversity of practices used and difficulties handling typically complex and incomplete observational datasets. We propose a method to 1) compress multi-factored management data into a single index, to holistically investigate the real world impact of management on colony mortality, and 2) simplify said index to identify the core practices for which a change in behavior is associated with the greatest improvement in survivorship. Experts scored the practices of US beekeepers (n = 18,971) documented using four years of retrospective surveys (2012-2015). Management Index scores significantly correlated with loss rates, with beekeepers most in line with recommendations suffering lower losses. The highest ranked practices varied by operation type, as recommendations accounted for the current prevalence of practices. These results validate experts' opinion using empirical data, and can help prioritize extension messages. Improving management will not prevent all losses; however, we show that few behavioral changes (in particular related to comb management, sources of new colonies and Varroa management) can lead to a non-negligible reduction in risk.


Assuntos
Criação de Abelhas , Varroidae , Animais , Abelhas , Estudos Retrospectivos , Estações do Ano , Inquéritos e Questionários
7.
Pest Manag Sci ; 76(12): 4278-4285, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32638464

RESUMO

BACKGROUND: Agricultural insect pests frequently exhibit geographic variation in levels of insecticide resistance, which are often presumed to be due to the intensity of insecticide use for pest management. However, regional differences in the evolution of resistance to novel insecticides suggests that other factors are influencing rates of adaptation. We examined median lethal concentration (LC50 ) bioassay data spanning 15 years and six insecticides (abamectin, imidacloprid, spinosad, cyantraniliprole, chlorantraniliprole, and metaflumizone) for evidence of regional differences in Leptinotarsa decemlineata baseline sensitivity to insecticides as they became commercially available. RESULTS: We consistently found that larvae from Colorado potato beetle populations from the northwestern USA had the highest baseline sensitivity to novel insecticides, while populations from the eastern USA had the lowest. Comparisons of gene expression between populations from these regions revealed constitutively elevated expression of an array of detoxification genes in the East, but no evidence of additional induction when exposed to imidacloprid. CONCLUSIONS: Our results suggest a mechanism for geographic variation in rates of adaptation to insecticides, whereby baseline levels of gene expression determine a population's response to novel insecticides. These findings have implications for the regional development of insecticide resistance management strategies and for the fundamental question of what determines the rate of adaptation to insecticides. © 2020 Society of Chemical Industry.


Assuntos
Besouros , Inseticidas , Animais , Besouros/genética , Colorado , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Larva/genética
8.
J Econ Entomol ; 112(4): 1509-1525, 2019 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-31008501

RESUMO

The parasitic mite Varroa destructor (Acari: Varroidae) is a major cause of overwintering honey bee (Apis mellifera) colony losses in the United States, suggesting that beekeepers must control Varroa populations to maintain viable colonies. Beekeepers have access to several chemical varroacides and nonchemical practices to control Varroa populations. However, no studies have examined large-scale patterns in Varroa control methods in the United States. Here we used responses from 4 yr of annual surveys of beekeepers representing all regions and operation sizes across the United States to investigate use of Varroa control methods and winter colony losses associated with use of different methods. We focused on seven varroacide products (amitraz, coumaphos, fluvalinate, hop oil, oxalic acid, formic acid, and thymol) and six nonchemical practices (drone brood removal, small-cell comb, screened bottom boards, powdered sugar, mite-resistant bees, and splitting colonies) suggested to aid in Varroa control. We found that nearly all large-scale beekeepers used at least one varroacide, whereas small-scale beekeepers were more likely to use only nonchemical practices or not use any Varroa control. Use of varroacides was consistently associated with the lowest winter losses, with amitraz being associated with lower losses than any other varroacide product. Among nonchemical practices, splitting colonies was associated with the lowest winter losses, although losses associated with sole use of nonchemical practices were high overall. Our results suggest potential control methods that are effective or preferred by beekeepers and should therefore inform experiments that directly test the efficacy of different control methods. This will allow beekeepers to incorporate Varroa control methods into management plans that improve the overwintering success of their colonies.


Assuntos
Ácaros e Carrapatos , Varroidae , Animais , Criação de Abelhas , Abelhas , Estações do Ano , Timol , Estados Unidos
9.
Ambio ; 48(10): 1209-1218, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30474832

RESUMO

Varroa (Varroa destructor) is a leading cause of honey bee mortality worldwide. In a U.S. national survey of beekeepers, 3519 respondents noted what they believe are the advantages and disadvantages of managing for Varroa, what good stewardship means in beekeeping, and whether they treated for Varroa. Dominant attitudes were keeping bees healthy, minimizing disturbance, and monitoring hives. We found a bifurcation in Varroa management beliefs. Decision tree analyses show group distinctions. Treatment Skeptics tend to say that stewardship means bees should not be disturbed or subjected to chemicals, and should be given forage to do their 'normal business.' This group was less likely to treat for Varroa. Treatment Adherents identify themselves as bee stewards and say stewardship means active hive management and keeping bees healthy and alive. Illuminating beekeeper stewardship is essential for a socioecological understanding of how to address challenging Varroa management and complex human-environmental production systems that have landscape-level effects.


Assuntos
Varroidae , Animais , Criação de Abelhas , Abelhas
10.
Curr Opin Insect Sci ; 26: 142-148, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29764654

RESUMO

Over the past decade, in some regions of the world, honey bee (Apis mellifera L.) colonies have experienced rates of colony loss that are difficult for beekeepers to sustain. The reasons for losses are complex and interacting, with major drivers including Varroaand related viruses, pesticides, nutrition and beekeeper practices. In these endeavors it has also become apparent that defining a dead colony, and singling out the effects of specific drivers of loss, is not so straightforward. Using the class of neonicotinoid pesticides as an example we explain why quantifying risk factor impact at the colony level is at times elusive and in some cases unpractical. In this review, we discuss the caveats of defining and quantifying dead colonies. We also summarize the current leading drivers of colony losses, their interactions and the most recent research on their effects on colony mortality.


Assuntos
Abelhas/efeitos dos fármacos , Colapso da Colônia/induzido quimicamente , Neonicotinoides/efeitos adversos , Animais , Criação de Abelhas/métodos , Abelhas/microbiologia , Abelhas/parasitologia , Abelhas/virologia , Colapso da Colônia/microbiologia , Colapso da Colônia/parasitologia , Colapso da Colônia/virologia , Inseticidas/efeitos adversos , Ácaros , Vírus
11.
Curr Opin Insect Sci ; 10: 37-44, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29588012

RESUMO

Honey bee surveillance systems are increasingly used to characterize honey bee health and disease burdens of bees in different regions and/or over time. In addition to quantifying disease prevalence, surveillance systems can identify risk factors associated with colony morbidity and mortality. Surveillance systems are often observational, and prove particularly useful when searching for risk factors in real world complex systems. We review recent examples of surveillance systems with particular emphasis on how these efforts have helped increase our understanding of honey bee health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA