Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34299281

RESUMO

Placental development is modified in response to maternal nutrient restriction (NR), resulting in a spectrum of fetal growth rates. Pregnant sheep carrying singleton fetuses and fed either 100% (n = 8) or 50% (NR; n = 28) of their National Research Council (NRC) recommended intake from days 35-135 of pregnancy were used to elucidate placentome transcriptome alterations at both day 70 and day 135. NR fetuses were further designated into upper (NR NonSGA; n = 7) and lower quartiles (NR SGA; n = 7) based on day 135 fetal weight. At day 70 of pregnancy, there were 22 genes dysregulated between NR SGA and 100% NRC placentomes, 27 genes between NR NonSGA and 100% NRC placentomes, and 22 genes between NR SGA and NR NonSGA placentomes. These genes mediated molecular functions such as MHC class II protein binding, signaling receptor binding, and cytokine activity. Gene set enrichment analysis (GSEA) revealed significant overrepresentation of genes for natural-killer-cell-mediated cytotoxicity in NR SGA compared to 100% NRC placentomes, and alterations in nutrient utilization pathways between NR SGA and NR NonSGA placentomes at day 70. Results identify novel factors associated with impaired function in SGA placentomes and potential for placentomes from NR NonSGA pregnancies to adapt to nutritional hardship.


Assuntos
Adaptação Fisiológica/genética , Dietoterapia/métodos , Feto/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Nutrientes/metabolismo , Placenta/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Feminino , Desenvolvimento Fetal/fisiologia , Peso Fetal/fisiologia , Nutrientes/administração & dosagem , Placenta/efeitos dos fármacos , Placenta/patologia , Gravidez , Ovinos , Transcriptoma
2.
Reproduction ; 162(4): R73-R83, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34314369

RESUMO

Maternal malnutrition gives rise to both short- and long-term consequences for the survival and health of the offspring. As the intermediary between mother and fetus, the placenta has the potential to interpret environmental signals, such as nutrient availability, and adapt to support fetal growth and development. While this potential is present, it is clear that at times placental adaptation fails to occur resulting in poor pregnancy outcomes. This review will focus on placental responses to maternal undernutrition related to changes in placental vascularization and hemodynamics and placental nutrient transport systems across species. While much of the available literature describes placental responses that result in poor fetal outcomes, novel models have been developed to utilize the inherent variation in fetal weight when dams are nutrient restricted to identify placental adaptations that result in normal-weight offspring. Detailed analyses of the spectrum of placental responses to maternal malnutrition point to alternations in placental histoarchitectural and vascular development, amino acid and lipid transport mechanisms, and modulation of immune-related factors. Dietary supplementation with selected nutrients, such as arginine, has the potential to improve placental growth and function through a variety of mechanisms including stimulating cell proliferation, protein synthesis, angiogenesis, vasodilation, and gene regulation. Improved understanding of placental responses to environmental cues is necessary to develop diagnostic and intervention strategies to improve pregnancy outcomes.


Assuntos
Desnutrição , Placenta , Feminino , Desenvolvimento Fetal/fisiologia , Peso Fetal , Humanos , Desnutrição/metabolismo , Troca Materno-Fetal/fisiologia , Placenta/metabolismo , Gravidez
3.
PLoS One ; 16(4): e0249924, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33831110

RESUMO

Maternal undernutrition during pregnancy followed by ad libitum access to nutrients during postnatal life induces postnatal metabolic disruptions in multiple species. Therefore, an experiment was conducted to evaluate postnatal growth, metabolism, and development of beef heifers exposed to late gestation maternal nutrient restriction. Pregnancies were generated via transfer of in vitro embryos produced using X-bearing sperm from a single Angus sire. Pregnant dams were randomly assigned to receive either 100% (control; n = 9) or 70% (restricted; n = 9) of their total energy requirements from gestational day 158 to parturition. From post-natal day (PND) 301 until slaughter (PND485), heifers were individually fed ad libitum in a Calan gate facility. Calves from restricted dams were lighter than controls at birth (P<0.05) through PND70 (P<0.05) with no difference in body weight from PND105 through PND485 (P>0.10). To assess pancreatic function, glucose tolerance tests were performed on PND315 and PND482 and a diet effect was seen with glucose area under the curve being greater (P<0.05) in calves born to restricted dams compared to controls. At slaughter, total internal fat was greater (P<0.05) in heifers born to restricted dams, while whole pituitary weight was lighter (P<0.05). Heifers from restricted dams had fewer growth hormone-positive cells (somatotrophs) compared to controls (P<0.05). Results demonstrate an impaired ability to clear peripheral glucose in heifers born to restricted dams leading to increased deposition of internal fat. A reduction in the number of somatotrophs may contribute to the adipogenic phenotype of heifers born to restricted dams due to growth hormone's known anabolic roles in growth, lipolysis, and pancreatic islet function.


Assuntos
Dieta/veterinária , Privação de Alimentos , Hormônio do Crescimento/metabolismo , Hipófise/crescimento & desenvolvimento , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Animais Recém-Nascidos , Peso Corporal , Bovinos , Metabolismo Energético , Feminino , Teste de Tolerância a Glucose , Hipófise/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Distribuição Aleatória , Somatotrofos/metabolismo
4.
Biol Reprod ; 104(3): 657-668, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33232974

RESUMO

During the peri-implantation period of pregnancy in sheep, there is an initial period of loose apposition of the elongating conceptuses (embryos and associated placental membranes) to the endometrial luminal epithelium (LE) that is followed by adhesion of the conceptus trophectoderm to the endometrial LE for implantation. Integrins and maternal extracellular matrix (ECM) molecules are major contributors to stable adhesion at implantation, and the ß3 integrin subunit (ITGB3) is implicated in the adhesion cascade for implantation in several species including the sheep. We blocked mRNA translation for trophectoderm-expressed ITGB3 by infusing morpholino antisense oligonucleotides into the uterine lumen of pregnant ewes on Day 9 to assess effects on conceptus elongation, and on Day 16 to assess effects on early placental development in sheep. Results indicate that sheep conceptuses elongate and implant to the uterine wall in the absence of ITGB3 expression by the conceptuses; however, loss of ITGB3 in conceptuses decreased the growth of embryos to Day 24 of gestation, and decreased expression of secreted phosphoprotein 1 (SPP1) and nitric oxide synthase 3 (NOS3). Abundant SPP1 was localized around the blood vessels in the placental allantoic membrane in normal sheep pregnancies. We hypothesize that NOS3 and SPP1 positively influence the development of the vasculature within the allantois, and that decreased expression of NOS3 and SPP1, in response to knockdown of ITGB3 in conceptuses, alters development of the vasculature in the allantois required to transport nutrients from the endometrium to support growth and development of the embryo.


Assuntos
Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Integrina beta3/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Osteopontina/metabolismo , Ovinos/embriologia , Animais , Clonagem Molecular , DNA Complementar , Técnicas de Cultura Embrionária , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Feminino , Integrina beta3/genética , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo III/genética , Osteopontina/genética , Placenta/irrigação sanguínea , Gravidez
5.
Biol Reprod ; 104(1): 170-180, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33001151

RESUMO

Nutrient restriction (NR) has the potential to negatively impact birthweight, an indicator of neonatal survival and lifelong health. Those fetuses are termed as small for gestational age (SGA). Interestingly, there is a spectral phenotype of fetal growth rates in response to NR associated with changes in placental development, nutrient and waste transport, and lipid metabolism. A sheep model with a maternal diet, starting at Day 35, of 100% National Research Council (NRC) nutrient requirements (n = 8) or 50% NRC (n = 28) was used to assess alterations in fetuses designated NR SGA (n = 7) or NR NonSGA (n = 7) based on fetal weight at Day 135 of pregnancy. Allantoic fluid concentrations of triglycerides were greater in NR SGA fetuses than 100% NRC and NR NonSGA fetuses at Day 70 (P < 0.05). There was a negative correlation between allantoic fluid concentrations of triglycerides (R2 = 0.207) and bile acids (R2 = 0.179) on Day 70 and fetal weight at Day 135 for NR ewes (P < 0.05). Bile acids were more abundant in maternal and fetal blood for NR SGA compared to 100% NRC and NR NonSGA ewes (P < 0.05). Maternal blood concentrations of NEFAs increased in late pregnancy in NR NonSGA compared to NR SGA ewes (P < 0.05). Protein expression of fatty acid transporter SLC27A6 localized to placentomal maternal and fetal epithelia and decreased in Day 70 NR SGA compared to 100% NRC and NR NonSGA placentomes (P < 0.05). These results identify novel factors associated with an ability of placentae and fetuses in NR NonSGA ewes to adapt to, and overcome, nutritional hardship during pregnancy.


Assuntos
Desenvolvimento Fetal/fisiologia , Peso Fetal/fisiologia , Feto/metabolismo , Metabolismo dos Lipídeos/fisiologia , Placenta/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Feminino , Idade Gestacional , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Gravidez , Ovinos , Triglicerídeos/metabolismo
6.
Endocrinology ; 161(8)2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32556218

RESUMO

The conceptuses (embryo/fetus and placental membranes) of pigs require energy to support elongation and implantation, and amounts of glucose and fructose increase in the uterine lumen during the peri-implantation period. Conceptuses from day 16 of pregnancy were incubated with either 14C-glucose or 14C-fructose and amounts of radiolabeled CO2 released from the conceptuses measured to determine rates of oxidation of glucose and fructose. Glucose and fructose both transport into conceptuses, and glucose is preferentially metabolized in the presence of fructose, whereas fructose is actively metabolized in the absence of glucose and to a lesser extent in the presence of glucose. Endometrial and placental expression of glucose transporters SLC2A1, SLC2A2, SCL2A3, and SLC2A4 were determined. SLC2A1 messenger RNA (mRNA) and protein, and SLC2A4 mRNA were abundant in the uterine luminal epithelium of pregnant compared to cycling gilts, and increased in response to progesterone and conceptus-secreted estrogen. SLC2A2 mRNA was expressed weakly by conceptus trophectoderm on day 15 of pregnancy, whereas SLC2A3 mRNA was abundant in trophectoderm/chorion throughout pregnancy. Therefore, glucose can be transported into the uterine lumen by SLC2A1, and then into conceptuses by SLC2A3. On day 60 of gestation, the cell-specific expression of these transporters was more complex, suggesting that glucose and fructose transporters are precisely regulated in a spatial-temporal pattern along the uterine-placental interface of pigs to maximize hexose sugar transport to the pig conceptus/placenta.


Assuntos
Ectoderma/efeitos dos fármacos , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 3/genética , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Hormônios Esteroides Gonadais/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Ectoderma/metabolismo , Implantação do Embrião/efeitos dos fármacos , Implantação do Embrião/genética , Embrião de Mamíferos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Estradiol/farmacologia , Feminino , Frutose/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Glicólise/genética , Masculino , Gravidez , Progesterona/farmacologia , Suínos/embriologia , Suínos/genética , Suínos/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(24): 11590-11595, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31138695

RESUMO

Exposure to fine particulate matter (PM) during pregnancy is associated with high risks of birth defects/fatality and adverse long-term postnatal health. However, limited mechanistic data are available to assess the detailed impacts of prenatal PM exposure. Here we evaluate fine PM exposure during pregnancy on prenatal/postnatal organogenesis in offspring and in predisposing metabolic syndrome for adult life. Between days 0 and 18 of gestation, two groups of adult female rats (n = 10 for each) were placed in a dual-exposure chamber device, one with clean ambient air (∼3 µg·m-3) and the other with ambient air in the presence of 100 to 200 µg·m-3 of ultrafine aerosols of ammonium sulfate. At birth (postnatal day 0, PND0), four males and four females were selected randomly from each litter to be nursed by dams, whereas tissues were collected from the remaining pups. At PND21, tissues were collected from two males and two females, whereas the remaining pups were fed either a high- or low-fat diet until PND105, when tissues were obtained for biochemical and physiological analyses. Maternal exposure to fine PM increased stillbirths; reduced gestation length and birth weight; increased concentrations of glucose and free fatty acids in plasma; enhanced lipid accumulation in the liver; and decreased endothelium-dependent relaxation of aorta. This lead to altered organogenesis and predisposed progeny to long-term metabolic defects in an age-, organ-, and sex-specific manner. Our results highlight the necessity to develop therapeutic strategies to remedy adverse health effects of maternal PM exposure on conceptus/postnatal growth and development.


Assuntos
Exposição Materna/efeitos adversos , Síndrome Metabólica/induzido quimicamente , Organogênese/efeitos dos fármacos , Material Particulado/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/patologia , Poluição do Ar/efeitos adversos , Animais , Peso ao Nascer/efeitos dos fármacos , Suscetibilidade a Doenças/sangue , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/patologia , Exposição Ambiental/efeitos adversos , Ácidos Graxos/sangue , Feminino , Glucose/metabolismo , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Organogênese/fisiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/sangue , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Placenta ; 52: 1-9, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28454689

RESUMO

INTRODUCTION: Endometria and placentae undergo developmental changes that affect the stability of genes used as references for normalization of qPCR data. We identified genes that are stable within the porcine endometrium and placenta throughout pregnancy, and elucidated the temporal/spatial mRNA localization of the glucose and arginine transporters, solute carrier family (SLC) 5A1 and SLC7A3, respectively. MATERIALS AND METHODS: qPCR was performed for 10 genes within porcine endometria from Days 5, 11, and 15 of the estrous cycle and 11, 15, 25, 40, 60, and 85 of pregnancy; and chorioallantois from Days 30, 35, 45, 50, 60, and 85. Gene stability was analyzed using GeNorm and NormFinder algorithms. qPCR and in situ hybridization determined temporal/spatial localization of SLC5A1 and SLC7A3 at the uterine-placental interface. RESULTS: The geometric mean of TATA-binding protein (TBP), hypoxanthine phosphoribosyl transferase 1 (HPRT1), and tubulin alpha 1B (TUBA1B) provides acceptable reference values for porcine placenta. The geometric mean of TBP, beta actin (ACTB), and succinate dehydrogenase complex subunit A flavoprotein (SDHA) is acceptable for endometria. SLC5A1 is induced by estrogen in endometrial luminal epithelium (LE) on Days 12 and 13 of pregnancy. SLC7A3 is expressed in the chorion. DISCUSSION AND CONCLUSION: Using appropriate reference genes resulted in complementary results between qPCR and in situ hybridization techniques for SLC5A1 and SLC7A3 mRNAs. SLC5A1 is induced in uterine LE by estrogen of trophectoderm origin when the blastocyst is free-floating and dependent on glucose from the endometrium, and SLC7A3 is expressed by the established placenta to support fetal growth.


Assuntos
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Endométrio/metabolismo , Genes Essenciais , Placenta/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transportador 1 de Glucose-Sódio/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Animais , Feminino , Gravidez , Transportador 1 de Glucose-Sódio/genética , Suínos
9.
Biol Reprod ; 95(5): 108, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27535960

RESUMO

The fetal fluids and uterine flushings of pigs contain higher concentrations of fructose than glucose, but fructose is not detected in maternal blood. Fructose can be synthesized from glucose via enzymes of the polyol pathway, aldose reductase (AKR1B1) and sorbitol dehydrogenase (SORD), transported across cell membranes by solute carriers SLC2A5 and SLC2A8, and converted to fructose-1-phosphate by ketohexokinase (KHK). SLC2A8, SLC2A5, AKR1B1, SORD, and KHK mRNAs and proteins were analyzed using quantitative PCR and immunohistochemistry or in situ hybridization in endometria and placentae of cyclic and pregnant gilts, cyclic gilts injected with estrogen, and ovariectomized gilts injected with progesterone. Progesterone up-regulated SLC2A8 protein in uterine luminal (LE) and glandular epithelia during the peri-implantation period, and expression became exclusively placental, chorion and blood vessels, after Day 30. P4 up-regulated SLC2A5 mRNA in uterine LE and glandular epithelia after implantation, and the chorion expressed SLC2A5 between Days 30 and 85. AKR1B1 and SORD proteins localized to uterine LE during the peri-implantation period, but expression switched to chorion by Day 20 and was maintained through Day 85. Uterine expression of AKR1B1 mRNA was down-regulated by estrogen. KHK protein localized to trophectoderm/chorion throughout gestation. These results provide evidence that components for the conversion of glucose to fructose and for fructose transport are present at the uterine-placental interface of pigs. The shift in expression from LE to chorion during pregnancy suggests free-floating conceptuses are supported by fructose synthesized by the uterus, but after implantation, the chorion becomes self-sufficient for fructose synthesis and transport.


Assuntos
Frutose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 5/metabolismo , Placenta/metabolismo , Útero/metabolismo , Aldeído Redutase/metabolismo , Animais , Implantação do Embrião/efeitos dos fármacos , Implantação do Embrião/fisiologia , Estradiol/farmacologia , Ciclo Estral/metabolismo , Feminino , Frutose/biossíntese , L-Iditol 2-Desidrogenase/metabolismo , Ovariectomia , Placenta/efeitos dos fármacos , Gravidez , Progesterona/farmacologia , Suínos , Útero/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA