RESUMO
Interleukin 31 (IL-31) is a proinflammatory cytokine, mainly secreted by Type II helper T cells. It signals through a heterodimeric receptor complex composed of IL-31 receptor α and oncostatin-M receptor ß chain. The hallmark feature of IL-31, in its pathological role, is its ability to induce pruritus in mammals. Pruritus is a common symptom and major reason of morbidity in cancer patients, compromising their quality of life. Although, IL-31 is differentially expressed in different tumor types and could promote or inhibit cancer progression, high expression of IL-31 is a contributing factor to advanced stage tumor and severity of pruritus. The simultaneous existence of pruritus and cancer could either result from the aberrations in common proteins that co-exist in both cancer and pruritus or the therapeutic treatment of cancer could indirectly induce pruritus. Although the biology of IL-31 has predominantly been described in skin diseases such as atopic dermatitis and other inflammatory diseases, the precise role of IL-31 in the tumor biology of different cancer types remains elusive. Herein, we summarize the current understanding on the role of this cytokine in the pathogenesis of different cancers.
Assuntos
Interleucinas , Neoplasias , Prurido , Humanos , Prurido/metabolismo , Prurido/imunologia , Prurido/etiologia , Neoplasias/metabolismo , Neoplasias/complicações , Neoplasias/imunologia , Interleucinas/metabolismo , Animais , Transdução de Sinais , Inflamação/metabolismoRESUMO
Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex pathophysiology characterized by intense pruritus, often associated with psychological stress and atopic and non-atopic comorbidities that significantly reduce quality of life. The psychological aspects of AD and the interaction between the mind and body via the skin-brain axis have led to an interest in mind-body therapies (MBT). The aim of this article is, therefore, to reinforce the importance of psychodermatological care in AD. We performed a focused literature review on holistic practices or integrative MBT in AD, including education, cognitive behavioral therapy, habit reversal, meditation, mindfulness, hypnotherapy, eye movement desensitization and reprocessing, biofeedback, progressive muscle relaxation, autonomous sensory meridian response, music therapy, massage, and touch therapy. A multidisciplinary holistic approach with MBT, in addition to conventional pharmacologic antipruritic therapies, to break the itch-scratch cycle may improve AD outcomes and psychological well-being. Although there is a paucity of rigorously designed trials, evidence shows the potential benefits of an integrative approach on pruritus, pain, psychological stress, anxiety, depressive symptoms, and sleep quality. Relaxation and various behavioral interventions, such as habit reversal therapy for replacing harmful scratching with massaging with emollient 'plus', may reduce the urge to scratch, while education may improve adherence to conventional therapies.
RESUMO
INTRODUCTION: Patients with alopecia areata (AA) may have received several therapies for management of AA during their lives. In the ALLEGRO phase 2b/3 (NCT03732807) study, the oral JAK3/TEC family kinase inhibitor ritlecitinib demonstrated efficacy and an acceptable safety profile in patients aged ≥ 12 years with AA and ≥ 50% scalp hair loss. This post hoc analysis investigated associations between prior use of AA therapies and Severity of Alopecia Tool (SALT) responses in patients receiving ritlecitinib for AA. METHODS: Patients receiving ritlecitinib 30 mg or 50 mg once daily with or without an initial 4-week 200-mg daily loading dose were grouped by previous exposure to AA treatments, including topicals, intralesional corticosteroids (ILCS), topical immunotherapy, and systemic immunosuppressants or any prior AA treatment. Multivariable logistic regression analyses evaluated the association between response based on a SALT score of ≤ 20 and any prior treatment for AA at weeks 24 and 48. RESULTS: Of 522 patients, 360 (69.0%) had previous exposure to any AA treatment. At Week 24, SALT ≤ 20 response was positively associated with prior use of ILCS (odds ratio [OR], 2.12; 95% confidence interval [CI], 1.23-3.65; P < 0.05) and negatively associated with prior use of systemic immunosuppressants (OR 0.50; 95% CI 0.28-0.88; P < 0.05). Prior use of topicals or topical immunotherapy was not associated with SALT ≤ 20 response at Week 24. By Week 48, no association was identified between SALT ≤ 20 response and prior use of topicals, ILCS, topical immunosuppressants, or systemic immunosuppressants (all P > 0.05). Previous exposure to any AA therapy was not associated with SALT ≤ 20 response at weeks 24 or 48 (all P > 0.05). CONCLUSIONS: Prior AA treatment history had no effect on longer-term treatment response to ritlecitinib. TRIAL REGISTRATION NUMBER: NCT03732807.
RESUMO
BACKGROUND: Insight into the pathophysiology of inflammatory skin diseases, especially at the proteomic level, is severely hampered by the lack of adequate in situ data. OBJECTIVE: We characterized lesional and nonlesional skin of inflammatory skin diseases using skin microdialysis. METHODS: Skin microdialysis samples from patients with atopic dermatitis (AD, n = 6), psoriasis vulgaris (PSO, n = 7), or prurigo nodularis (PN, n = 6), as well as healthy controls (n = 7), were subjected to proteomic and multiplex cytokine analysis. Single-cell RNA sequencing of skin biopsy specimens was used to identify the cellular origin of cytokines. RESULTS: Among the top 20 enriched Gene Ontology (GO; geneontology.org) annotations, nicotinamide adenine dinucleotide metabolic process, regulation of secretion by cell, and pyruvate metabolic process were elevated in microdialysates from lesional AD skin compared with both nonlesional skin and controls. The top 20 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG; genome.jp/kegg) pathways in these 3 groups overlapped almost completely. In contrast, nonlesional skin from patients with PSO or PN and control skin showed no overlap with lesional skin in this KEGG pathway analysis. Lesional skin from patients with PSO, but not AD or PN, showed significantly elevated protein levels of MCP-1 compared with nonlesional skin. IL-8 was elevated in lesional versus nonlesional AD and PSO skin, whereas IL-12p40 and IL-22 were higher only in lesional PSO skin. Integrated single-cell RNA sequencing data revealed identical cellular sources of these cytokines in AD, PSO, and PN. CONCLUSION: On the basis of microdialysates, the proteomic data of lesional PSO and PN skin, but not lesional AD skin, differed significantly from those of nonlesional skin. IL-8, IL-22, MCP-1, and IL-12p40 might be suitable markers for minimally invasive molecular profiling.
RESUMO
A wide variety of inflammatory mediators, mainly cytokines and chemokines, are induced during SARS CoV-2 infection. Among these proinflammatory mediators, chemokines tend to play a pivotal role in virus-mediated immunopathology. The C-C chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1) is a potent proinflammatory cytokine and strong chemoattractant of monocytes, macrophages and CD4+ T cells bearing C-C chemokine receptor type-2 (CCR2). Besides controlling immune cell trafficking, CCL2 is also involved in multiple pathophysiological processes including systemic hyperinflammation associated cytokine release syndrome (CRS), organ fibrosis and blood coagulation. These pathological features are commonly manifested in severe and fatal cases of COVID-19. Given the crucial role of CCL2 in COVID-19 pathogenesis, the CCL2:CCR2 axis may constitute a potential therapeutic target to control virus-induced hyperinflammation and multi-organ dysfunction. Herein we describe recent advances on elucidating the role of CCL2 in COVID-19 pathogenesis, prognosis, and a potential target of anti-inflammatory interventions.
Assuntos
COVID-19 , Quimiocina CCL2 , SARS-CoV-2 , Humanos , COVID-19/imunologia , COVID-19/virologia , COVID-19/patologia , Quimiocina CCL2/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Prognóstico , Receptores CCR2/metabolismo , Biomarcadores , Anti-Inflamatórios/uso terapêutico , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/virologiaRESUMO
Macrolide antibiotic azithromycin is widely used in clinical practice to treat respiratory tract infections and inflammatory diseases. However, its mechanism of action is not fully understood. Given the involvement of the CD27 pathway in the pathophysiology of various T-lymphocyte-mediated inflammatory, autoimmune, and lymphoproliferative diseases, we examined the impact of AZM on CD27 regulation and potential consequences on CD4+ and CD8+ T-cell phenotypes. Using cellular immunology approaches on healthy donors' peripheral blood mononuclear cells, we demonstrate AZM-mediated downregulation of surface CD27 expression as well as its extracellular release as soluble CD27. Notably, AZM-exposed CD27high (hi) cells were defective in their ability to expand compared to CD27intermediate (Int) and CD27low (lo) subsets. The defective CD27hi subset expansion was found to be associated with impaired cell proliferation and cell division. At the molecular level, the CD27hi subset exhibited lower mTOR activity than other subsets. Functionally, AZM treatment resulted in marked depletion of helper CD4+ (Th1) and cytotoxic CD8+ T-lymphocyte (Tc1)-associated CXCR3+CD27hi effector cells and inhibition of inflammatory cytokine IFN-γ production. These findings provide mechanistic insights on immunomodulatory features of AZM on T-lymphocyte by altering the CD27 pathway. From a clinical perspective, this study also sheds light on potential clinical benefits observed in patients on prophylactic AZM regimens against various respiratory diseases and opens avenues for future adjunct therapy against Th1- and Tc1-dominated inflammatory and autoimmune diseases.
Assuntos
Azitromicina , Transdução de Sinais , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral , Humanos , Azitromicina/farmacologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fenótipo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Células Th1/imunologia , Células Th1/efeitos dos fármacos , Antibacterianos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/efeitos dos fármacosRESUMO
Cutaneous T-cell lymphomas (CTC) are a heterogeneous group of T-cell lymphoproliferative malignancies of the skin with limited treatment options, increased resistance and remission. Metabolic reprogramming is vital in orchestrating the uncontrolled growth and proliferation of cancer cells. Importantly, deregulated signalling plays a significant role in metabolic reprogramming. Considering the crucial role of metabolic reprogramming in cancer-cell growth and proliferation, target identification and the development of novel and multi-targeting agents are imperative. The present study explores the underlying mechanisms and metabolic signalling pathways associated with Glabridin mediated anti-cancer actions in CTCL. Our results show that Glabridin significantly inhibits the growth of CTCL cells through induction of programmed cell death (PCD) such as apoptosis, autophagy and necrosis. Interestingly, results further show that Glabridin induces PCD in CTCL cells by targeting MAPK signalling pathways, particularly the activation of ERK. Further, Glabridin also sensitized CTCL cells to the anti-cancer drug, bortezomib. Importantly, LC-MS-based metabolomics analyses further showed that Glabridin targeted multiple metabolites and metabolic pathways intricately involved in cancer cell growth and proliferation in an ERK-dependent fashion. Overall, our findings revealed that Glabridin induces PCD and attenuates the expression of regulatory proteins and metabolites involved in orchestrating the uncontrolled proliferation of CTCL cells through ERK activation. Therefore, Glabridin possesses important features of an ideal anti-cancer agent.
Assuntos
Apoptose , Proliferação de Células , Isoflavonas , Linfoma Cutâneo de Células T , Metabolômica , Fenóis , Humanos , Isoflavonas/farmacologia , Proliferação de Células/efeitos dos fármacos , Fenóis/farmacologia , Linhagem Celular Tumoral , Linfoma Cutâneo de Células T/metabolismo , Linfoma Cutâneo de Células T/patologia , Linfoma Cutâneo de Células T/tratamento farmacológico , Apoptose/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Antineoplásicos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/tratamento farmacológicoRESUMO
BACKGROUND: Current treat-to-target recommendations for atopic dermatitis (AD) may not include high enough treatment targets and do not fully consider patient needs. OBJECTIVE: To develop recommendations for optimized AD management, including disease severity assessments, treatment goals and targets, and guidance for treatment escalation/modification. METHODS: An international group of expert dermatologists drafted a series of recommendations for AD management using insights from a global patient study and 87 expert dermatologists from 44 countries. Experts voted on recommendations using a modified eDelphi voting process. RESULTS: The Aiming High in Eczema/Atopic Dermatitis (AHEAD) recommendations establish a novel approach to AD management, incorporating shared decision-making and a concept for minimal disease activity (MDA). Consensus (≥70% agreement) was reached for all recommendations in 1 round of voting; strong consensus (≥90% agreement) was reached for 30/34 recommendations. In the AHEAD approach, patients select their most troublesome AD feature(s); the clinician chooses a corresponding patient-reported severity measure and objective severity measure. Treatment targets are chosen from a list of 'moderate' and 'optimal' targets, with achievement of 'optimal' targets defined as MDA. CONCLUSIONS: Patient and expert insights led to the development of AHEAD recommendations, which establish a novel approach to AD management. Patients were not involved in the eDelphi voting process used to generate consensus on each recommendation. However, patient perspectives were captured in a global, qualitative patient research study that was considered by the experts in their initial drafting of the recommendations.
Assuntos
Consenso , Tomada de Decisão Compartilhada , Dermatite Atópica , Índice de Gravidade de Doença , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/terapia , HumanosRESUMO
S-phase kinase-associated protein 2 (Skp2) is an F-box protein overexpressed in human cancers and linked with poor prognosis. It triggers cancer pathogenesis, including stemness and drug resistance. In this study, we have explored the potential role of Skp2 targeting in restoring the expression of tumor suppressors in human cutaneous squamous cell carcinoma (cSCC) cells. Our results showed that genetic and pharmacological Skp2 targeting markedly suppressed cSCC cell proliferation, colony growth, spheroid formation, and enhanced sensitization to chemotherapeutic drugs. Further, western blot results demonstrated restoration of tumor suppressor (KLF4) and CDKI (p21) and suppression of vimentin and survivin in Skp2-knocked-down cSCC cells. Importantly, we also explored that Skp2 targeting potentiates apoptosis of cSCC cells through MAPK signaling. Moreover, co-targeting of Skp2 and PI3K/AKT resulted in increased cancer cell death. Interestingly, curcumin, a well-known naturally derived anticancer agent, also inhibits Skp2 expression with concomitant CDKI upregulation. In line, curcumin suppressed cSCC cell growth through ROS-mediated apoptosis, while the use of N-acetyl cysteine (NAC) reversed curcumin-induced cell death. Curcumin treatment also sensitized cSCC cells to conventional anticancer drugs, such as cisplatin and doxorubicin. Altogether, these data suggest that Skp2 targeting restores the functioning of tumor suppressors, inhibits the expression of genes associated with cell proliferation and stemness, and sensitizes cancer cells to anticancer drugs. Thus, genetic, and pharmacological ablation of Skp2 can be an important strategy for attenuating cancer pathogenesis and associated complications in skin squamous cell carcinoma.
Assuntos
Apoptose , Carcinoma de Células Escamosas , Fator 4 Semelhante a Kruppel , Proteínas Quinases Associadas a Fase S , Neoplasias Cutâneas , Humanos , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Apoptose/efeitos dos fármacos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular Tumoral , Fator 4 Semelhante a Kruppel/metabolismo , Proliferação de Células/efeitos dos fármacos , Curcumina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacosRESUMO
Non-melanoma skin cancer (NMSC), encompassing basal and squamous cell carcinoma, is the most prevalent cancer in the United States. While surgical removal remains the conventional therapy with a 95% 5-year cure rate, there is a growing interest in exploring alternative treatment strategies. In this study, we investigated the role of Bortezomib (BTZ), a proteasome inhibitor, in NMSC. Using two NMSC cell lines (A431 and A388), we examined the effects of BTZ treatment. Our results demonstrated that 48 h of BTZ treatment led to downregulating Skp2 expression in both A431 and A388 cells while upregulating p53 expression, specifically in A388 cells. These alterations resulted in impaired cellular growth and caspase-dependent cell death. Silencing Skp2 in A388 cells with siRNA confirmed the upregulation of p53 as a direct target. Furthermore, BTZ treatment increased the Bax to Bcl-2 ratio, promoting mitochondrial permeability and the subsequent release of cytochrome C, thereby activating caspases. We also found that BTZ exerted its antitumor effects by generating reactive oxygen species (ROS), as blocking ROS production significantly reduced BTZ-induced apoptotic cell death. Interestingly, BTZ treatment induced autophagy, which is evident from the increased expression of microtubule-associated proteins nucleoporin p62 and LC-3A/B. In addition to cell lines, we assessed the impact of BTZ in an in vivo setting using Caenorhabditis elegans (C. elegans). Our findings demonstrated that BTZ induced germline apoptosis in worms even at low concentrations. Notably, this increased apoptosis was mediated through the activity of CEP-1, the worm's counterpart to mammalian p53. In summary, our study elucidated the molecular mechanism underlying BTZ-induced apoptosis in NMSC cell lines and C. elegans. By targeting the skp2/p53 axis, inducing mitochondrial permeability, generating ROS, and promoting autophagy, BTZ demonstrates promising anti-cancer activity in NMSC. These findings provide novel insights into potential therapeutic strategies for controlling the unregulated growth of NMSC.
RESUMO
Transcription factors (TFs) are essential in controlling gene regulatory networks that determine cellular fate during embryogenesis and tumor development. TFs are the major players in promoting cancer stemness by regulating the function of cancer stem cells (CSCs). Understanding how TFs interact with their downstream targets for determining cell fate during embryogenesis and tumor development is a critical area of research. CSCs are increasingly recognized for their significance in tumorigenesis and patient prognosis, as they play a significant role in cancer initiation, progression, metastasis, and treatment resistance. However, traditional therapies have limited effectiveness in eliminating this subset of cells, allowing CSCs to persist and potentially form secondary tumors. Recent studies have revealed that cancer cells and tumors with CSC-like features also exhibit genes related to the epithelial-to-mesenchymal transition (EMT). EMT-associated transcription factors (EMT-TFs) like TWIST and Snail/Slug can upregulate EMT-related genes and reprogram cancer cells into a stem-like phenotype. Importantly, the regulation of EMT-TFs, particularly through post-translational modifications (PTMs), plays a significant role in cancer metastasis and the acquisition of stem cell-like features. PTMs, including phosphorylation, ubiquitination, and SUMOylation, can alter the stability, localization, and activity of EMT-TFs, thereby modulating their ability to drive EMT and stemness properties in cancer cells. Although targeting EMT-TFs holds potential in tackling CSCs, current pharmacological approaches to do so directly are unavailable. Therefore, this review aims to explore the role of EMT- and CSC-TFs, their connection and impact in cellular development and cancer, emphasizing the potential of TF networks as targets for therapeutic intervention.
Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Neoplasias/genética , Neoplasias/terapia , Transição Epitelial-Mesenquimal/genética , Diferenciação Celular , Células-Tronco Neoplásicas/patologia , Linhagem Celular TumoralRESUMO
Chronic itch is a common and complex symptom often associated with skin diseases such as atopic dermatitis (AD). Although IL-27 is linked to AD, its role and clinical significance in itch remain undefined. We sought to investigate IL-27 function in itch using tissue-specific transgenic mice, various itch models, behavior scoring, RNA sequencing, and cytokine/kinase array. Our findings show that IL-27 receptors were overexpressed in human AD skin. Intradermal IL-27 injection failed to directly induce itch in mice but upregulated skin protease-activated receptor 2 (PAR2) transcripts, a key factor in itch and AD. IL-27 activated human keratinocytes, increasing PAR2 transcription and activity. Coinjection of SLIGRL (PAR2 agonist) and IL-27 in mice heightened PAR2-mediated itch. In addition, IL-27 boosted BST2 transcription in sensory neurons and keratinocytes. BST2 was upregulated in AD skin, and its injection in mice induced itch-like response. BST2 colocalized with sensory nerve branches in AD skin from both human and murine models. Sensory neurons released BST2, and mice with sensory neuron-specific BST2 knockout displayed reduced itch responses. Overall, this study provides evidence that skin IL-27/PAR2 and neuronal IL-27/BST2 axes are implicated in cutaneous inflammation and pruritus. The discovery of neuronal BST2 in pruritus shed light on BST2 in the itch cascade.
Assuntos
Antígeno 2 do Estroma da Médula Óssea , Dermatite Atópica , Prurido , Receptor PAR-2 , Animais , Feminino , Humanos , Masculino , Camundongos , Antígenos CD/metabolismo , Antígenos CD/genética , Dermatite Atópica/patologia , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Modelos Animais de Doenças , Proteínas Ligadas por GPI/metabolismo , Proteínas Ligadas por GPI/genética , Interleucina-27/metabolismo , Interleucina-27/genética , Queratinócitos/metabolismo , Camundongos Transgênicos , Prurido/metabolismo , Prurido/genética , Prurido/patologia , Prurido/etiologia , Receptor PAR-2/metabolismo , Receptor PAR-2/genética , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Pele/metabolismo , Pele/patologia , Antígeno 2 do Estroma da Médula Óssea/genética , Antígeno 2 do Estroma da Médula Óssea/metabolismoRESUMO
IL-36 is a most recent member of the IL-1 cytokine family, primarily expressed at barrier sites of the body such as the skin, lungs, and intestine. It plays a vital role in inflammation and is implicated in the development of various cutaneous; intestinal; and pulmonary disorders, including psoriasis, inflammatory bowel disease, and chronic obstructive pulmonary disease. IL-36 comprises 4 isoforms: the proinflammatory IL-36α, IL-36ß, and IL-36γ and the anti-inflammatory IL-36R antagonist. An imbalance between proinflammatory and anti-inflammatory IL-36 isoforms can contribute to the inflammatory fate of cells and tissues. IL-36 cytokines signal through an IL-36R heterodimer mediating their function through canonical signaling cacade, including the NF-B pathway. Prominent for its role in psoriasis, IL-36 has recently been associated with disease mechanisms in atopic dermatitis, hidradenitis suppurativa, neutrophilic dermatoses, autoimmune blistering disease, and Netherton syndrome. The major cutaneous source of IL-36 cytokines is keratinocytes, pointing to its role in the communication between the epidermis, innate (neutrophils, dendritic cells) immune system, and adaptive (T helper [Th]1 cells, Th17) immune system. Thus, cutaneous IL-36 signaling is crucial for the immunopathological outcome of various skin diseases. Consequently, the IL-36/IL-36R axis has recently been recognized as a promising drug target for the treatment of inflammatory disorders beyond psoriasis. This review summarizes the current update on IL-36 cytokines in inflammatory skin diseases.
Assuntos
Dermatite , Interleucina-1 , Psoríase , Dermatopatias , Humanos , Anti-Inflamatórios , Citocinas/metabolismo , Interleucina-1/metabolismo , Isoformas de Proteínas , Dermatopatias/tratamento farmacológico , Dermatopatias/metabolismo , Receptores de Interleucina-1/metabolismoRESUMO
BACKGROUND: The benzophenanthridine Sanguinarine (Sng) is one of the most abundant root alkaloids with a long history of investigation and pharmaceutical applications. The cytotoxicity of Sng against various tumor cells is well-established; however, its antiproliferative and apoptotic potential against the cutaneous squamous cell carcinoma (cSCC) cells remains unknown. In the present study, we investigated the anti-cancer potential of Sng against cSCC cells and elucidated the underlying mechanisms relevant to the drug action. METHODS: The inhibitory effect of Sng on cSCC cells was evaluated by analyzing cell viability, colony-forming ability and multi-caspase activity. Apoptosis was quantified through Annexin-V/Propidium iodide flow cytometric assay and antagonized by pan-caspase inhibitor z-VAD-FMK. Mitochondrial membrane potential (ΔΨm) dysfunction was analyzed by JC-1 staining, whereas reactive oxygen species (ROS) generation was confirmed by pretreatment with N-acetylcysteine (NAC) and fluorogenic probe-based flow cytometric detection. The expression of cell cycle regulatory proteins, apoptotic proteins and MAPK signaling molecules was determined by Western blotting. Involvement of JNK, p38-MAPK and MEK/ERK in ROS-mediated apoptosis was investigated by pretreatment with SP600125 (JNK inhibitor), SB203580 (p38 inhibitor) and U0126 (ERK1/2 inhibitor), respectively. The stemness-targeting potential of Sng was assessed in tumor cell-derived spheroids. RESULTS: Treatment with Sng decreased cell viability and colony formation in primary (A431) and metastatic (A388) cSCC cells in a time- and dose-dependent manner. Sng significantly inhibited cell proliferation by inducing sub-G0/G1 cell-cycle arrest and apoptosis in cSCC cells. Sng evoked ROS generation, intracellular glutathione (GSH) depletion, ΔΨm depolarization and the activation of JNK pathway as well as that of caspase-3, -8, -9, and PARP. Antioxidant NAC inhibited ROS production, replenished GSH levels, and abolished apoptosis induced by Sng by downregulating JNK. Pretreatment with z-VAD-FMK inhibited Sng-mediated apoptosis. The pharmacological inhibition of JNK by SP600125 mitigated Sng-induced apoptosis in metastatic cSCC cells. Finally, Sng ablated the stemness of metastatic cSCC cell-derived spheroids. CONCLUSION: Our results indicate that Sng exerts a potent cytotoxic effect against cSCC cells that is underscored by a mechanism involving multiple levels of cooperation, including cell-cycle sub-G0/G1 arrest and apoptosis induction through ROS-dependent activation of the JNK signaling pathway. This study provides insight into the potential therapeutic application of Sng targeting cSCC.
Assuntos
Antracenos , Carcinoma de Células Escamosas , Isoquinolinas , Neoplasias Cutâneas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Benzofenantridinas/farmacologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Transdução de Sinais , Apoptose , Sistema de Sinalização das MAP Quinases , Linhagem Celular TumoralRESUMO
The International Society of AD (ISAD) organized a roundtable on global aspects of AD at the WCD 2023 in Singapore. According to the Global Burden of Disease (GBD) consortium, at least 171 million individuals were affected with AD in 2019, corresponding to 2.23% of the world population, with age-standardized prevalence and incidence rates that were relatively stable from 1990 to 2019. Based on the panel experience, most AD cases are mild-to-moderate. Without parallel data on disease prevalence and severity, the GBD data are difficult to interpret in many regions. This gap is particularly important in countries with limited medical infrastructure, but indirect evidence suggests a significant burden of AD in low-and-medium resource settings, especially urban areas. The Singapore roundtable was an opportunity to compare experiences in World Bank category 1 (Madagascar and Mali), 3 (Brazil, China) and 4 (Australia, Germany, Qatar, USA, Singapore, Japan) countries. The panel concluded that current AD guidelines are not adapted for low resource settings and a more pragmatic approach, as developed by WHO for skin NTDs, would be advisable for minimal access to moisturizers and topical corticosteroids. The panel also recommended prioritizing prevention studies, regardless of the level of existing resources. For disease long-term control in World Bank category 3 and most category 4 countries, the main problem is not access to drugs for most mild-to-moderate cases, but rather poor compliance due to insufficient time at visits. Collaboration with WHO, patient advocacy groups and industry may promote global change, improve capacity training and fight current inequalities. Finally, optimizing management of AD and its comorbidities needs more action at the primary care level, because reaching specialist care is merely aspirational in most settings. Primary care empowerment with store and forward telemedicine and algorithms based on augmented intelligence is a future goal.