Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Z Orthop Unfall ; 161(2): 175-181, 2023 Apr.
Artigo em Inglês, Alemão | MEDLINE | ID: mdl-34320661

RESUMO

Differential diagnosis of muscle pain and weakness is extensive, including neurological, vertebral, arthrogenic, vascular, traumatic, immunological, endocrine, genetic and infectious aetiologies, as well as medication or toxin-related causes. Muscles are highly sensitive to a large number of drugs, especially with high doses. Although many drug classes can cause toxic myopathy, a significant number of cases are caused by lipid-lowering drugs, long-term use of corticosteroids, and, most often, alcohol misuse. Some drug interactions, e.g. those that are metabolised via the enzyme CYP3A4, can increase the serum levels of the drugs and drug-induced toxicity. A careful history of patient's drug and alcohol consumption is therefore vital. Clinical symptoms depend on the drug, dosage and patient's sensitivity. They can vary from asymptomatic increase in serum levels of creatine kinase, mild myalgia and cramps to muscle weakness, rhabdomyolysis, kidney failure and even death. The pathogenesis is often only partially known and multifactorial. Toxic myopathy is often reversible once the drug is discontinued, alternative drug therapy is started or a different dosage regimen is chosen. Complications such as acute kidney failure must be avoided, and analgesic therapy may be indicated.


Assuntos
Doenças Musculares , Rabdomiólise , Humanos , Doenças Musculares/induzido quimicamente , Doenças Musculares/diagnóstico , Doenças Musculares/terapia , Miotoxicidade , Rabdomiólise/induzido quimicamente , Etanol/efeitos adversos
2.
Cells ; 11(10)2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35626646

RESUMO

Rheumatoid arthritis (RA) is associated with systemic osteoporosis, which leads to severe disability and low quality of life. Current therapies target osteoclasts to reduce bone degradation, but more treatment options would be required to promote bone protection by acting directly on osteoblasts (OB). Recently, the local production of dopamine in inflamed joints of RA has been observed. Thus, in this project, we aimed to determine the implication of the neurotransmitter dopamine in the bone formation process in RA. Dopamine receptors (DR) in the human bone tissue of RA or osteoarthritis (OA) patients were examined by immunohistochemistry. DR in isolated human osteoblasts (OB) was analyzed by flow cytometry, and dopamine content was evaluated by ELISA. Osteoclasts (OC) were differentiated from the PBMCs of healthy controls (HC) and RA patients. Isolated cells were treated with specific dopamine agonists. The effect of dopamine on mineralization was evaluated by Alizarin red staining. Cytokine release in supernatants was measured by ELISA. Osteoclastogenesis was evaluated with TRAP staining. OC markers were analyzed via real-time PCR and bone resorption via staining of resorption pits with toluidine blue. All DR were observed in bone tissue, especially in the bone remodeling area. Isolated OB maintained DR expression, which allowed their study in vitro. Isolated OB expressed tyrosine hydroxylase, the rate-limiting enzyme for dopamine production, and contained dopamine. The activation of D2-like DR significantly increased bone mineralization in RA osteoblasts and increased osteoclastogenesis but did not alter the expression of OC markers nor bone resorption. DR were found in the bone remodeling area of human bone tissue and dopamine can be produced by osteoblasts themselves, thus suggesting a local autocrine/paracrine pathway of dopamine in the bone. D2-like DRs are responsible for bone mineralization in osteoblasts from RA patients without an increase in bone resorption, thus suggesting the D2-like DR pathway as a possible future therapeutic target to counteract bone resorption in arthritis.


Assuntos
Artrite Reumatoide , Reabsorção Óssea , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Dopamina , Humanos , Osteoblastos/metabolismo , Osteogênese , Qualidade de Vida , Receptores Dopaminérgicos
3.
Mar Drugs ; 19(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34677442

RESUMO

Osteoarthritis belongs to the most common joint diseases in humans and animals and shows increased incidence in older patients. The bioactivities of collagen hydrolysates, sulfated glucosamine and a special fatty acid enriched dog-food were tested in a dog patient study of 52 dogs as potential therapeutic treatment options in early osteoarthritis. Biophysical, biochemical, cell biological and molecular modeling methods support that these well-defined substances may act as effective nutraceuticals. Importantly, the applied collagen hydrolysates as well as sulfated glucosamine residues from marine organisms were strongly supported by both an animal model and molecular modeling of intermolecular interactions. Molecular modeling of predicted interaction dynamics was evaluated for the receptor proteins MMP-3 and ADAMTS-5. These proteins play a prominent role in the maintenance of cartilage health as well as innate and adapted immunity. Nutraceutical data were generated in a veterinary clinical study focusing on mobility and agility. Specifically, key clinical parameter (MMP-3 and TIMP-1) were obtained from blood probes of German shepherd dogs with early osteoarthritis symptoms fed with collagen hydrolysates. Collagen hydrolysate, a chondroprotective food supplement was examined by high resolution NMR experiments. Molecular modeling simulations were used to further characterize the interaction potency of collagen fragments and glucosamines with protein receptor structures. Potential beneficial effects of collagen hydrolysates, sulfated glycans (i.e., sulfated glucosamine from crabs and mussels) and lipids, especially, eicosapentaenoic acid (extracted from fish oil) on biochemical and physiological processes are discussed here in the context of human and veterinary medicine.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Colágeno/farmacologia , Dieta/veterinária , Suplementos Nutricionais , Doenças do Cão/dietoterapia , Osteoartrite/veterinária , Substâncias Protetoras/farmacologia , Animais , Organismos Aquáticos , Colágeno/química , Colágeno/uso terapêutico , Cães , Osteoartrite/dietoterapia , Substâncias Protetoras/química , Substâncias Protetoras/uso terapêutico
4.
PLoS One ; 16(4): e0250146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33861772

RESUMO

The current limitations in evaluating synovial fluid (SF) components in health and disease and between species are due in part to the lack of data on normal SF, because of low availability of SF from healthy articular joints. Our study aimed to quantify species-dependent differences in phospholipid (PL) profiles of normal knee SF obtained from equine and human donors. Knee SF was obtained during autopsy by arthrocentesis from 15 and 13 joint-healthy human and equine donors, respectively. PL species extracted from SF were quantitated by mass spectrometry whereas ELISA determined apolipoprotein (Apo) B-100. Wilcoxon's rank sum test with adjustment of scores for tied values was applied followed by Holm´s method to account for multiple testing. Six lipid classes with 89 PL species were quantified, namely phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, phosphatidylethanolamine, plasmalogen, and ceramide. Importantly, equine SF contains about half of the PL content determined in human SF with some characteristic changes in PL composition. Nutritional habits, decreased apolipoprotein levels and altered enzymatic activities may have caused the observed different PL profiles. Our study provides comprehensive quantitative data on PL species levels in normal human and equine knee SF so that research in joint diseases and articular lubrication can be facilitated.


Assuntos
Apolipoproteínas B/análise , Lipídeos/análise , Líquido Sinovial/química , Adulto , Animais , Ceramidas/análise , Feminino , Cavalos , Humanos , Ácido Hialurônico/análise , Joelho , Articulação do Joelho , Lipidômica/métodos , Masculino , Fosfolipídeos/análise , Especificidade da Espécie , Esfingomielinas/análise , Líquido Sinovial/citologia , Líquido Sinovial/metabolismo , Adulto Jovem
5.
Ann Rheum Dis ; 79(10): 1370-1380, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32665267

RESUMO

OBJECTIVE: Previous work has established that the deacetylase sirtuin-1 (SIRT1) is cleaved by cathepsin B in chondrocytes subjected to proinflammatory stress, yielding a stable but inactive N-terminal (NT) polypeptide (75SIRT1) and a C-terminal (CT) fragment. The present work examined if chondrocyte-derived NT-SIRT1 is detected in serum and may serve as an investigative and exploratory biomarker of osteoarthritis (OA). METHODS: We developed a novel ELISA assay to measure the ratio of NT to CT of SIRT1 in the serum of human individuals and mice subjected to post-traumatic OA (PTOA) or age-dependent OA (ADOA). We additionally monitored NT/CT SIRT1 in mice subject to ADOA/PTOA followed by senolytic clearance. Human chondrosenescent and non-senescent chondrocytes were exposed to cytokines and analysed for apoptosis and NT/CT SIRT1 ratio in conditioned medium. RESULTS: Wild-type mice with PTOA or ADOA of moderate severity exhibited increased serum NT/CT SIRT1 ratio. In contrast, this ratio remained low in cartilage-specific Sirt1 knockout mice despite similar or increased PTOA and ADOA severity. Local clearance of senescent chondrocytes from old mice with post-traumatic injury resulted in a lower NT/CT ratio and reduced OA severity. While primary chondrocytes exhibited NT/CT ratio increased in conditioned media after prolonged cytokine stimulation, this increase was not evident in cytokine-stimulated chondrosenescent cells. Finally, serum NT/CT ratio was elevated in humans with early-stage OA. CONCLUSIONS: Increased levels of serum NT/CT SIRT1 ratio correlated with moderate OA in both mice and humans, stemming at least in part from non-senescent chondrocyte apoptosis, possibly a result of prolonged inflammatory insult.


Assuntos
Biomarcadores/sangue , Osteoartrite/patologia , Sirtuína 1/sangue , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Senescência Celular/fisiologia , Condrócitos/metabolismo , Condrócitos/patologia , Humanos , Camundongos , Osteoartrite/sangue
6.
Front Immunol ; 10: 2757, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849953

RESUMO

Obesity-in which free fatty acid (FFA) levels are chronically elevated-is a known risk factor for different rheumatic diseases, and obese patients are more likely to develop osteoarthritis (OA) also in non-weight-bearing joints. These findings suggest that FFA may also play a role in inflammation-related joint damage and bone loss in rheumatoid arthritis (RA) and OA. Therefore, the objective of this study was to analyze if and how FFA influence cells of bone metabolism in rheumatic diseases. When stimulated with FFA, osteoblasts from RA and OA patients secreted higher amounts of the proinflammatory cytokine interleukin (IL)-6 and the chemokines IL-8, growth-related oncogene α, and monocyte chemotactic protein 1. Receptor activator of nuclear factor kappa B ligand (RANKL), osteoprotegerin, and osteoblast differentiation markers were not influenced by FFA. Mineralization activity of osteoblasts correlated inversely with the level of FFA-induced IL-6 secretion. Expression of the Wnt signaling molecules, axin-2 and ß-catenin, was not changed by palmitic acid (PA) or linoleic acid (LA), suggesting no involvement of the Wnt signaling pathway in FFA signaling for osteoblasts. On the other hand, Toll-like receptor 4 blockade significantly reduced PA-induced IL-8 secretion by osteoblasts, while blocking Toll-like receptor 2 had no effect. In osteoclasts, IL-8 secretion was enhanced by PA and LA particularly at the earliest time point of differentiation. Differences were observed between the responses of RA and OA osteoclasts. FFA might therefore represent a new molecular factor by which adipose tissue contributes to subchondral bone damage in RA and OA. In this context, their mechanisms of action appear to be dependent on inflammation and innate immune system rather than Wnt-RANKL pathways.


Assuntos
Artrite Reumatoide , Ácido Linoleico/farmacologia , Osteoartrite , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Ácido Palmítico/farmacologia , Idoso , Animais , Células Cultivadas , Feminino , Humanos , Interleucina-8/metabolismo , Leucócitos Mononucleares/citologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Osteoblastos/metabolismo , Osteoclastos/metabolismo
7.
ACS Omega ; 4(2): 4206-4220, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30847433

RESUMO

Insulin and lysozyme share the common features of being prone to aggregate and having biomedical importance. Encapsulating lysozyme and insulin in micellar nanoparticles probably would prevent aggregation and facilitate oral drug delivery. Despite the vivid structural knowledge of lysozyme and insulin, the environment-dependent oligomerization (dimer, trimer, and multimer) and associated structural dynamics remain elusive. The knowledge of the intra- and intermolecular interaction profiles has cardinal importance for the design of encapsulation protocols. We have employed various biophysical methods such as NMR spectroscopy, X-ray crystallography, Thioflavin T fluorescence, and atomic force microscopy in conjugation with molecular modeling to improve the understanding of interaction dynamics during homo-oligomerization of lysozyme (human and hen egg) and insulin (porcine, human, and glargine). The results obtained depict the atomistic intra- and intermolecular interaction details of the homo-oligomerization and confirm the propensity to form fibrils. Taken together, the data accumulated and knowledge gained will further facilitate nanoparticle design and production with insulin or lysozyme-related protein encapsulation.

8.
J Immunol ; 198(12): 4588-4595, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28500074

RESUMO

In rheumatoid arthritis (RA), cartilage and bone matrix are degraded, and extracellular matrix (ECM) proteins, acting as cellular activators, are liberated. Similar to ECM proteins, matrix-bound chemokines, cytokines, and growth factors (GFs) influence functional properties of key cells in RA, especially synovial fibroblasts. The role of these molecules on attachment, migration, and proinflammatory and prodestructive activation of RASFs was analyzed. Adhesion/migration of RASFs were examined under GF-enriched (GF+) or -reduced (GF-) conditions with or without addition of matrix-associated GFs, TGF-ß, and platelet-derived GF to GF- or culture supernatants. Fibroblast adhesion and alterations in proinflammatory/prodestructive properties (e.g., IL-6/matrix metalloproteinase 3-release) in response to matrix-associated molecules were compared. Effects of GF+, GF-, and other ECM components on human RASF-mediated cartilage invasion were examined in the SCID mouse model. RASF adhesion under GF- conditions was significantly lower compared with GF+ conditions (6.8- versus 8.3-fold). This effect was specific for RA because control cells showed opposite effects (e.g., osteoarthritis synovial fibroblasts [SF]; GF- versus GF+: 10.7- versus 8-fold). Addition of TGF-ß to GF- increased RASF attachment (12.7-fold) compared with other matrices and components. RASF adhesion to GF+ matrix resulted in the strongest IL-6 and matrix metalloproteinase-3 release, and was even more pronounced compared with supplementation of single GFs. In vivo, GF- matrix decreased RASF-mediated cartilage invasion compared with GF+ matrix. ECM components and especially GFs when bound within ECM actively enhance RASF attraction and cartilage adhesion. This observation was specific for RASFs as a reverse behavior was observed for controls.


Assuntos
Artrite Reumatoide/imunologia , Adesão Celular , Movimento Celular , Fibroblastos/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Membrana Sinovial/citologia , Animais , Ensaios de Migração Celular , Movimento Celular/efeitos dos fármacos , Matriz Extracelular , Fibroblastos/efeitos dos fármacos , Fibroblastos/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Interleucina-6/metabolismo , Metaloproteinase 3 da Matriz/biossíntese , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Camundongos SCID , Fator de Crescimento Derivado de Plaquetas/farmacologia , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/imunologia , Fator de Crescimento Transformador beta1/farmacologia
10.
Clin Exp Rheumatol ; 35(3): 406-414, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28079506

RESUMO

OBJECTIVES: Adiponectin is an effector molecule in the pathophysiology of rheumatoid arthritis, e.g. by inducing cytokines and matrix degrading enzymes in synovial fibroblasts. There is growing evidence that adiponectin affects osteoblasts and osteoclasts although the contribution to the aberrant bone metabolism in rheumatoid arthritis is unclear. Therefore, the adiponectin effects on rheumatoid arthritis-derived osteoblasts and osteoclasts were evaluated. METHODS: Adiponectin and its receptors were examined in bone tissue. Primary human osteoblasts and osteoclasts were stimulated with adiponectin and analysed using realtime polymerase chain-reaction and immunoassays. Effects on matrix-production by osteoblasts and differentiation and resorptive activity of osteoclasts were examined. RESULTS: Immunohistochemistry of rheumatoid arthritis bone tissue showed adiponectin expression in key cells of bone remodelling. Adiponectin altered gene expression and cytokine release in osteoblasts and increased IL-8 secretion by osteoclasts. Adiponectin inhibited osterix and induced osteoprotegerin mRNA in osteoblasts. In osteoclasts, MMP-9 and tartrate resistant acid phosphatase expression was increased. Accordingly, mineralisation capacity of osteoblasts decreased whereas resorptive activity of osteoclasts increased. CONCLUSIONS: The results confirm the proinflammatory potential of adiponectin and support the idea that adiponectin influences rheumatoid arthritis bone remodelling through alterations in osteoblast and osteoclast.


Assuntos
Adiponectina/farmacologia , Artrite Reumatoide/patologia , Remodelação Óssea/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Adulto , Idoso , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Calcificação Fisiológica/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Receptores de Adiponectina/agonistas , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Fator de Transcrição Sp7 , Fosfatase Ácida Resistente a Tartarato/genética , Fosfatase Ácida Resistente a Tartarato/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Matrix Biol ; 62: 75-91, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27884778

RESUMO

OBJECTIVE: Osteophyte formation in osteoarthritis (OA) is mediated by increased osteoblast activity, which is -in turn- regulated by the Wnt signaling pathway. Obesity is regarded a risk factor in OA, yet little is known about the interaction between adipose tissue-derived factors, the adipokines, and bone formation, although adipokines are associated with the pathogenesis of OA. Therefore, the effect of adipokines on bone and cartilage forming cells and osteophyte development was analyzed. METHODS: Human OA osteophytes were histologically characterized and adipokine expression was evaluated by immunohistochemistry. Osteoblasts and chondrocytes were isolated from OA tissue and stimulated with adiponectin, resistin, or visfatin. Cytokine and osteoblast/chondrocyte markers were quantified and activation of Wnt and p38 MAPK signaling was analyzed. RESULTS: Adiponectin, resistin, and visfatin were expressed in OA osteophytes by various articular cell types. Stimulation of OA osteoblasts with adiponectin and of OA chondrocytes with visfatin led to an increased release of proinflammatory mediators but not to osteoblast differentiation or activation. Additionally, visfatin increased matrix degrading factors in chondrocytes. Wnt signaling was not altered by adipokines, but adiponectin induced p38 MAPK signaling in osteoblasts. CONCLUSION: Adipokines are present in OA osteophytes, and adiponectin and visfatin increase the release of proinflammatory mediators by osteoblasts and chondrocytes. The effects of adiponectin were mediated by p38 MAPK but not Wnt signaling in osteoblasts. Therefore, the results support the idea that adipokines do not directly influence osteophyte development but the proinflammatory conditions in OA.


Assuntos
Adiponectina/metabolismo , Citocinas/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Osteoartrite/complicações , Osteoblastos/citologia , Osteófito/metabolismo , Resistina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Diferenciação Celular , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Osteoartrite/metabolismo , Osteoblastos/metabolismo , Via de Sinalização Wnt
12.
J Immunol ; 197(7): 2589-97, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27549172

RESUMO

Extracellular RNA (exRNA) has been characterized as a molecular alarm signal upon cellular stress or tissue injury and to exert biological functions as a proinflammatory, prothrombotic, and vessel permeability-regulating factor. In this study, we investigated the contribution of exRNA and its antagonist RNase1 in a chronic inflammatory joint disease, rheumatoid arthritis (RA). Upon immunohistochemical inspection of RA, osteoarthritis (OA), and psoriatic arthritis synovium, exRNA was detectable only in the RA synovial lining layer, whereas extracellular DNA was detectable in various areas of synovial tissue. In vitro, exRNA (150-5000 nt) was released by RA synovial fibroblasts (RASF) under hypoxic conditions but not under normoxia or TNF-α treatment. RNase activity was increased in synovial fluid from RA and OA patients compared with psoriatic arthritis patients, whereas RNase activity of RASF and OASF cultures was not altered by hypoxia. Reduction of exRNA by RNase1 treatment decreased adhesion of RASF to cartilage, but it had no influence on their cell proliferation or adhesion to endothelial cells. In vivo, treatment with RNase1 reduced RASF invasion into coimplanted cartilage in the SCID mouse model of RA. We also analyzed the expression of neuropilins in synovial tissue and SF, as they may interact with vascular endothelial growth factor signaling and exRNA. The data support the concepts that the exRNA/RNase1 system participates in RA pathophysiology and that RASF are influenced by exRNA in a prodestructive manner.


Assuntos
Artrite Reumatoide/metabolismo , Adesão Celular , Movimento Celular , Espaço Extracelular/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , RNA/metabolismo , Membrana Sinovial/patologia , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos SCID , RNA/genética , RNA/isolamento & purificação
13.
ChemMedChem ; 11(9): 990-1002, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27136597

RESUMO

Polysialic acid (polySia) and polySia glycomimetic molecules support nerve cell regeneration, differentiation, and neuronal plasticity. With a combination of biophysical and biochemical methods, as well as data mining and molecular modeling techniques, it is possible to correlate specific ligand-receptor interactions with biochemical processes and in vivo studies that focus on the potential therapeutic impact of polySia, polySia glycomimetics, and sulfated polysaccharides in neuronal diseases. With this strategy, the receptor interactions of polySia and polySia mimetics can be understood on a submolecular level. As the HNK-1 glycan also enhances neuronal functions, we tested whether similar sulfated oligo- and polysaccharides from seaweed could be suitable, in addition to polySia, for finding potential new routes into patient care focusing on an improved cure for various neuronal diseases. The knowledge obtained here on the structural interplay between polySia or sulfated polysaccharides and their receptors can be exploited to develop new drugs and application routes for the treatment of neurological diseases and dysfunctions.


Assuntos
Polissacarídeos/metabolismo , Ácidos Siálicos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Substrato Quinase C Rico em Alanina Miristoilada , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/química , Polissacarídeos/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Ácidos Siálicos/química , Ácidos Siálicos/farmacologia
14.
Joint Bone Spine ; 83(1): 63-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26076655

RESUMO

OBJECTIVE: Osteoarthritis is not only characterized by cartilage degradation but also involves subchondral bone remodeling and osteophyte formation. Osteophytes are fibrocartilage-capped bony outgrowths originating from the periosteum. The pathophysiology of osteophyte formation is not completely understood. Yet, different research approaches are under way. Therefore, a histological osteophyte classification to achieve comparable results in osteophyte research was established for application to basic science research questions. METHODS: The osteophytes were collected from knee joints of osteoarthritis patients (n=10, 94 osteophytes in total) after joint replacement surgery. Their size and origin in the respective joint were photo-documented. To develop an osteophyte classification, serial tissue sections were evaluated using histological (hematoxylin and eosin, Masson's trichrome, toluidine blue) and immunohistochemical staining (collagen type II). RESULTS: Based on the histological and immunohistochemical evaluation, osteophytes were categorized into four different types depending on the degree of ossification and the percentage of mesenchymal connective tissue. Size and localization of osteophytes were independent from the histological stages. CONCLUSION: This histological classification system of osteoarthritis osteophytes provides a helpful tool for analyzing and monitoring osteophyte development and for characterizing osteophyte types within a single human joint and may therefore contribute to achieve comparable results when analyzing histological findings in osteophytes.


Assuntos
Articulação do Joelho/patologia , Osteoartrite do Joelho/patologia , Osteófito/patologia , Idoso , Artroplastia do Joelho , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/cirurgia
15.
Knee Surg Sports Traumatol Arthrosc ; 23(12): 3729-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25218576

RESUMO

PURPOSE: Matrix-induced autologous chondrocyte implantation (MACI) has demonstrated effectiveness in treating isolated cartilage defects of the knee but medium- and long-term evidence and information on the management of postoperative complications or partially successful cases are sparse. This study hypothesised that MACI is effective for up to 5 years and that patients with posttreatment problems may go on to obtain clinical benefit from other interventions. METHODS: A follow-on, prospective case series of patients recruited into a previous controlled, randomised, prospective study or newly enroled. Patients were followed up 6, 12, 24 and 60 months after surgery. Outcome measures were Tegner (activity levels) and Lysholm (pain, stability, gait, clinical symptoms) scores. Zone-specific subgroups were analysed 6, 12 and 24 months postoperatively. RESULTS: Sixty-five patients were treated with MACI. Median Tegner score improved from II to IV at 12 months; an improvement maintained to 60 months. Mean Lysholm score improved from 28.5 to 76.6 points (±19.8) at 24 months, settling back to 75.5 points after 5 years (p > 0.0001). No significant differences were identified in the zone-specific analysis. Posttreatment issues (N = 12/18.5 %) were resolved with microfracture, debridement, OATS or bone grafting. CONCLUSIONS: MACI is safe and effective in the majority of patients. Patients in whom treatment is only partially successful can go on to obtain clinical benefit from other cartilage repair options. This study adds to the clinical evidence on the MACI procedure, offers insight into likely treatment outcomes, and highlights MACI's usefulness as part of an armamentarium of surgical approaches to the treatment of isolated knee defects. LEVEL OF EVIDENCE: Prospective case control study with no control group, Level III.


Assuntos
Cartilagem Articular/cirurgia , Condrócitos/transplante , Traumatismos do Joelho/cirurgia , Articulação do Joelho/cirurgia , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Transplante Autólogo , Resultado do Tratamento
16.
PLoS One ; 8(1): e53955, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23342047

RESUMO

Destruction of articular cartilage is a characteristic feature of osteoarthritis (OA). Collagen hydrolysates are mixtures of collagen peptides and have gained huge public attention as nutriceuticals used for prophylaxis of OA. Here, we evaluated for the first time whether different bovine collagen hydrolysate preparations indeed modulate the metabolism of collagen and proteoglycans from human OA cartilage explants and determined the chemical composition of oligopeptides representing collagen fragments. Using biophysical techniques, like MALDI-TOF-MS, AFM, and NMR, the molecular weight distribution and aggregation behavior of collagen hydrolysates from bovine origin (CH-Alpha®, Peptan™ B 5000, Peptan™ B 2000) were determined. To investigate the metabolism of human femoral OA cartilage, explants were obtained during knee replacement surgery. Collagen synthesis of explants as modulated by 0-10 mg/ml collagen hydrolysates was determined using a novel dual radiolabeling procedure. Proteoglycans, NO, PGE(2), MMP-1, -3, -13, TIMP-1, collagen type II, and cell viability were determined in explant cultures. Groups of data were analyzed using ANOVA and the Friedman test (n = 5-12). The significance was set to p≤0.05. We found that collagen hydrolysates obtained from different sources varied with respect to the width of molecular weight distribution, average molecular weight, and aggregation behavior. None of the collagen hydrolysates tested stimulated the biosynthesis of collagen. Peptan™ B 5000 elevated NO and PGE(2) levels significantly but had no effect on collagen or proteoglycan loss. All collagen hydrolysates tested proved not to be cytotoxic. Together, our data demonstrate for the first time that various collagen hydrolysates differ with respect to their chemical composition of collagen fragments as well as by their pharmacological efficacy on human chondrocytes. Our study underscores the importance that each collagen hydrolysate preparation should first demonstrate its pharmacological potential both in vitro and in vivo before being used for both regenerative medicine and prophylaxis of OA.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Colágeno/metabolismo , Osteoartrite/metabolismo , Animais , Cartilagem Articular/patologia , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Colágeno/biossíntese , Colágeno/química , Dinoprostona/metabolismo , Humanos , Hidrólise , Peso Molecular , Óxido Nítrico/metabolismo , Osteoartrite/patologia , Proteoglicanas/metabolismo , Especificidade da Espécie
17.
Chemphyschem ; 13(13): 3117-25, 2012 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-22855352

RESUMO

Heterogeneous mixtures of collagen fragments can be used as nutrition supplement or as key ingredients for ointments with therapeutic relevance in wound healing. Some mixtures of collagen fragments are referred to as collagen hydrolysates owing to the production process with hydrolytic enzymes. Since the precise composition of collagen hydrolysates is generally unknown, it is of interest to analyze samples containing various collagen fragments with appropriate biophysical methods. Any product optimization without a profound knowledge concerning the size and the molecular weight distribution of its components is nearly impossible. It turned out that a combination of AFM methods with NMR techniques is exceptionally suited to examine the size range and the aggregation behavior of the collagen fragments in the hydrolysates of fish, jellyfish, chicken, porcine and bovine collagen. Supported by molecular modeling calculations, the AFM and NMR experiments provide a detailed knowledge about the composition of collagen hydrolysates and collagen ointments. Furthermore, the data allow a correlation between the size of the fragments and their potential bioactivity.


Assuntos
Colágeno/química , Colágeno/ultraestrutura , Animais , Bovinos , Galinhas , Hidrólise , Microscopia de Força Atômica/métodos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Cifozoários , Suínos
18.
J Biol Chem ; 287(34): 28378-85, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22767598

RESUMO

Adipokines such as adiponectin and visfatin/pre-B-cell colony-enhancing factor (PBEF) have been recently shown to contribute to synovial inflammation in rheumatoid arthritis (RA). In this study, we evaluated the pathophysiological implication of visfatin/PBEF in the molecular patterns of RA synovial tissue, focusing on RA synovial fibroblasts (RASFs), key players in RA synovium. Expression of visfatin/PBEF in synovial fluid and tissue of RA patients was detected by immunoassays and immunohistochemistry. RASFs were stimulated with different concentrations of visfatin/PBEF over varying time intervals, and changes in gene expression were evaluated at the RNA and protein levels using Affymetrix array, real-time PCR, and immunoassays. The signaling pathways involved were identified. The influence of visfatin/PBEF on fibroblast motility and migration was analyzed. In RA synovium, visfatin/PBEF was predominantly expressed in the lining layer, lymphoid aggregates, and interstitial vessels. In RASFs, visfatin/PBEF induced high amounts of chemokines such as IL-8 and MCP-1, proinflammatory cytokines such as IL-6, and matrix metalloproteinases such as MMP-3. Phosphorylation of p38 MAPK was observed after visfatin/PBEF stimulation, and inhibition of p38 MAPK showed strong reduction of visfatin-induced effects. Directed as well as general fibroblast motility was increased by visfatin/PBEF-induced factors. The results of this study indicate that visfatin/PBEF is involved in synovial fibroblast activation by triggering fibroblast motility and promoting cytokine synthesis at central sites in RA synovium.


Assuntos
Artrite Reumatoide/enzimologia , Movimento Celular , Citocinas/biossíntese , Fibroblastos/enzimologia , Regulação Enzimológica da Expressão Gênica , Mediadores da Inflamação/metabolismo , Nicotinamida Fosforribosiltransferase/biossíntese , Membrana Sinovial/enzimologia , Artrite Reumatoide/patologia , Quimiocina CCL2/biossíntese , Feminino , Fibroblastos/patologia , Perfilação da Expressão Gênica , Humanos , Interleucina-6/biossíntese , Interleucina-8/biossíntese , Masculino , Metaloproteinase 3 da Matriz/biossíntese , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Membrana Sinovial/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
Ann Rheum Dis ; 71(10): 1724-32, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22532632

RESUMO

OBJECTIVES: Several clinical studies have suggested the adipocytokine adiponectin is involved in the progression of rheumatoid arthritis (RA). From this point of view, adiponectin might present a new therapeutic target. However, as adiponectin also exerts beneficial effects in the human organism, a strategy that would allow its detrimental effects to be abolished while maintaining the positive effects would be highly favourable. To elucidate such a strategy, the authors analysed whether the different adiponectin isoforms induce diverging effects, especially with regard to rheumatoid arthritis synovial fibroblasts (RASF), a central cell type in RA pathogenesis capable of invading into and destroying cartilage. METHODS: Affymetrix microarrays were used to screen for changes in gene expression of RASF. Messenger RNA levels were quantified by real-time PCR, protein levels by immunoassay. The migration of RASF and primary human lymphocytes was analysed using a two-chamber migration assay. RESULTS: In RASF, the individual adiponectin isoforms induced numerous genes/proteins relevant in RA pathogenesis to clearly different extents. In general, the most potent isoforms were the high molecular weight/middle molecular weight isoforms and the globular isoform, while the least potent isoform was the adiponectin trimer. The chemokines secreted by RASF upon adiponectin stimulation resulted in an increased migration of RASF and lymphocytes. CONCLUSION: The results clearly suggest a pro-inflammatory and joint-destructive role of all adiponectin isoforms in RA pathophysiology, indicating that in chronic inflammatory joint diseases the detrimental effects outweigh the beneficial effects of adiponectin.


Assuntos
Adiponectina/metabolismo , Artrite Reumatoide/metabolismo , Fibroblastos/metabolismo , Adiponectina/imunologia , Artrite Reumatoide/imunologia , Células Cultivadas , Quimiocinas/biossíntese , Fibroblastos/imunologia , Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Membrana Sinovial/metabolismo
20.
Arthritis Rheum ; 62(10): 2886-99, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20564003

RESUMO

OBJECTIVE: Rheumatoid arthritis (RA) is associated with increased production of adipokines, which are cytokine-like mediators that are produced mainly in adipose tissue but also in synovial cells. Since RA synovial fibroblasts (RASFs), lymphocytes, endothelial cells, and chondrocytes are key players in the pathophysiology of RA, this study was undertaken to analyze the effects of the key adipokine adiponectin on proinflammatory and prodestructive synovial effector cells. METHODS: Lymphocytes were activated in part prior to stimulation. All cells were stimulated with adiponectin, and changes in gene and protein expression were determined by Affymetrix and protein arrays. Messenger RNA and protein levels were confirmed using semiquantitative reverse transcription-polymerase chain reaction (PCR), real-time PCR, and immunoassays. Intracellular signal transduction was evaluated using chemical signaling inhibitors. RESULTS: Adiponectin stimulation of human RASFs predominantly induced the secretion of chemokines, as well as proinflammatory cytokines, prostaglandin synthases, growth factors, and factors of bone metabolism and matrix remodeling. Lymphocytes, endothelial cells, and chondrocytes responded to adiponectin stimulation with enhanced synthesis of cytokines and various chemokines. Additionally, chondrocytes released increased amounts of matrix metalloproteinases. In RASFs, adiponectin-mediated effects were p38 MAPK and protein kinase C dependent. CONCLUSION: Our previous findings indicated that adiponectin was present in inflamed synovium, at sites of cartilage invasion, in lymphocyte infiltrates, and in perivascular areas. The findings of the present study indicate that adiponectin induces gene expression and protein synthesis in human RASFs, lymphocytes, endothelial cells, and chondrocytes, supporting the concept of adiponectin being involved in the pathophysiologic modulation of RA effector cells. Adiponectin promotes inflammation through cytokine synthesis, attraction of inflammatory cells to the synovium, and recruitment of prodestructive cells via chemokines, thus promoting matrix destruction at sites of cartilage invasion.


Assuntos
Adiponectina/fisiologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/fisiopatologia , Quimiocinas/metabolismo , Fibroblastos/metabolismo , Membrana Sinovial/fisiopatologia , Estudos de Casos e Controles , Células Cultivadas , Condrócitos/metabolismo , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Humanos , Inflamação/fisiopatologia , Articulação do Joelho/fisiopatologia , Linfócitos/metabolismo , Osteoartrite do Joelho , Análise Serial de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA