Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 58(5): 854-62, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25936803

RESUMO

Eukaryotic ribosome biogenesis requires nuclear import and hierarchical incorporation of ∼80 ribosomal proteins (RPs) into the ribosomal RNA core. In contrast to prokaryotes, many eukaryotic RPs possess long extensions that interdigitate in the mature ribosome. RpL4 is a prime example, with an âˆ¼80-residue-long surface extension of unknown function. Here, we identify assembly chaperone Acl4 that initially binds the universally conserved internal loop of newly synthesized RpL4 via its superhelical TPR domain, thereby restricting RpL4 loop insertion at its cognate nascent rRNA site. RpL4 release from Acl4 is orchestrated with pre-ribosome assembly, during which the eukaryote-specific RpL4 extension makes several distinct interactions with the 60S surface, including a co-evolved site on neighboring RpL18. Consequently, mutational inactivation of this contact site, on either RpL4 or RpL18, impairs RpL4-Acl4 disassembly and RpL4 pre-ribosome incorporation. We propose that hierarchical ribosome assembly can be achieved by eukaryotic RP extensions and dedicated assembly chaperones.


Assuntos
Proteínas Fúngicas/química , Proteínas Ribossômicas/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae
2.
J Cell Biol ; 208(3): 283-97, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25646085

RESUMO

Nuclear pore complexes (NPCs) are huge assemblies formed from ∼30 different nucleoporins, typically organized in subcomplexes. One module, the conserved Nup82 complex at the cytoplasmic face of NPCs, is crucial to terminate mRNA export. To gain insight into the structure, assembly, and function of the cytoplasmic pore filaments, we reconstituted in yeast the Nup82-Nup159-Nsp1-Dyn2 complex, which was suitable for biochemical, biophysical, and electron microscopy analyses. Our integrative approach revealed that the yeast Nup82 complex forms an unusual asymmetric structure with a dimeric array of subunits. Based on all these data, we developed a three-dimensional structural model of the Nup82 complex that depicts how this module might be anchored to the NPC scaffold and concomitantly can interact with the soluble nucleocytoplasmic transport machinery.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Poro Nuclear/ultraestrutura , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Sequência de Aminoácidos , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae/ultraestrutura
3.
Methods Cell Biol ; 122: 99-115, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24857727

RESUMO

The discovery of dynein light chain 2 (Dyn2) as a member of the nucleoporins in yeast led to a series of applications to study NPC structure and function. Its intriguing ability to act as a hub for the parallel dimerization of two short amino acid sequence motifs (DID) prompted us to utilize it as a tool for probing nucleocytoplasmic transport in vivo. Further, the distinct structure of the Dyn2-DID rod, which is easily visible in the electron microscope, allowed us to develop a precise structural label on proteins or protein complexes. This label was used to identify the position of subunits in NPC subcomplexes or to derive at pseudo-atomic models of single large Nups. The versatility for various applications of the DID-Dyn2 system makes it an attractive molecular tool beyond the nuclear pore and transport field.


Assuntos
Dineínas/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Poro Nuclear/ultraestrutura , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Dados de Sequência Molecular , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
4.
Methods Cell Biol ; 122: 147-63, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24857729

RESUMO

The vast number of cellular proteins performs their roles within macromolecular assemblies and functional cell networks. Hence, an understanding of how multiprotein complexes are formed and modified during biogenesis is a key problem in cell biology. Here, we describe a detailed protocol for a nonradioactive pulse-chase in vivo-labeling approach. The method is based on the incorporation of an unnatural amino acid (O-methyl-tyrosine) by the nonsense suppression of an amber stop codon that quickly fuses an affinity tag of choice to a protein of interest. This affinity tag could be used to directly isolate the newly synthesized proteins and hence allows for the characterization of early complex biogenesis intermediates. Combined with a tetracycline controllable riboswitch in the 5'-UTR of the respective mRNA, this approach became a versatile tool to study dynamic protein assembly within cellular networks (Stelter et al., 2012). In the context of this volume, this method notably provides a suitable approach to study NPC, ribosome and mRNP biogenesis, or nuclear protein translocation. This chapter includes detailed protocols to track newly synthesized, epitope pulsed-chased proteins by western blot, their assembly within complexes using immunoprecipitation, and their subcellular localization using indirect immunofluorescence or subcellular fractionation. While these protocols use budding yeast as model system, this method can be adapted to other model systems.


Assuntos
Metiltirosinas/genética , Complexos Multiproteicos/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/biossíntese , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Códon de Terminação/genética , Epitopos/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Imunoprecipitação , Metiltirosinas/química , Complexos Multiproteicos/biossíntese , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Riboswitch/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Coloração e Rotulagem
5.
Mol Cell ; 47(5): 788-96, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22819325

RESUMO

Many cellular proteins perform their roles within macromolecular assemblies. Hence, an understanding of how these multiprotein complexes form is a fundamental question in cell biology. We developed a translation-controlled pulse-chase system that allows time-resolved isolation of newly forming multiprotein complexes in chemical quantities suitable for biochemical and cell biological analysis. The "pulse" is triggered by an unnatural amino acid, which induces immediate translation of an amber stop codon repressed mRNA encoding the protein of interest with a built-in tag for detection and purification. The "chase" is elicited by stopping translation of this bait via a riboswitch in the respective mRNA. Over the course of validating our method, we discovered a distinct time-resolved assembly step during NPC biogenesis and could directly monitor the spatiotemporal maturation of preribosomes via immunofluorescence detection and purification of a pulse-labeled ribosomal protein. Thus, we provide an innovative strategy to study dynamic protein assembly within cellular networks.


Assuntos
Mapeamento de Epitopos , Proteínas Ribossômicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Marcação por Isótopo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Ribossomos/química , Ribossomos/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo
6.
J Cell Biol ; 195(2): 183-92, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21987633

RESUMO

Unraveling the organization of the FG repeat meshwork that forms the active transport channel of the nuclear pore complex (NPC) is key to understanding the mechanism of nucleocytoplasmic transport. In this paper, we develop a tool to probe the FG repeat network in living cells by modifying FG nucleoporins (Nups) with a binding motif (engineered dynein light chain-interacting domain) that can drag several copies of an interfering protein, Dyn2, into the FG network to plug the pore and stop nucleocytoplasmic transport. Our method allows us to specifically probe FG Nups in vivo, which provides insight into the organization and function of the NPC transport channel.


Assuntos
Transporte Ativo do Núcleo Celular , Dineínas , Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear/química , Engenharia de Proteínas , Linhagem Celular , Métodos , Técnicas de Sonda Molecular , Leveduras
7.
Nat Struct Mol Biol ; 17(6): 775-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20512149

RESUMO

Positional knowledge of subunits within multiprotein assemblies is crucial for understanding their function. The topological analysis of protein complexes by electron microscopy has undergone impressive development, but analysis of the exact positioning of single subunits has lagged behind. Here we have developed a clonable approximately 80-residue tag that, upon attachment to a target protein, can recruit a structurally prominent electron microscopy label in vitro. This tag is readily visible on single particles and becomes exceptionally distinct after image processing and classification. Thus, our method is applicable for the exact topological mapping of subunits in macromolecular complexes.


Assuntos
Microscopia Eletrônica/métodos , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Mapeamento de Peptídeos/métodos , Subunidades Proteicas/química , Sequência de Aminoácidos , Dineínas/química , Dineínas/genética , Dineínas/ultraestrutura , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/ultraestrutura , Processamento de Imagem Assistida por Computador , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Subunidades Proteicas/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura
8.
J Cell Biol ; 185(3): 387-95, 2009 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-19414606

RESUMO

How individual nucleoporins (Nups) perform their role in nuclear pore structure and function is largely unknown. In this study, we examined the structure of purified Nup170 to obtain clues about its function. We show that Nup170 adopts a crescent moon shape with two structurally distinct and separable domains, a beta-propeller N terminus and an alpha-solenoid C terminus. To address the individual roles of each domain, we expressed these domains separately in yeast. Notably, overexpression of the Nup170 C domain was toxic in nup170Delta cells and caused accumulation of several Nups in cytoplasmic foci. Further experiments indicated that the C-terminal domain anchors Nup170 to nuclear pores, whereas the N-terminal domain functions to recruit or retain a subset of Nups, including Nup159, Nup188, and Pom34, at nuclear pores. We conclude that Nup170 performs its role as a structural adapter between cytoplasmically oriented Nups and the nuclear pore membrane.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Poro Nuclear/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiologia , Citoplasma/fisiologia , Escherichia coli/genética , Galactose/farmacologia , Glucose/farmacologia , Microscopia Eletrônica , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Regiões Promotoras Genéticas , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura
9.
Mol Cell ; 29(1): 46-55, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18206968

RESUMO

Nic96 is a conserved nucleoporin that recruits the Nsp1-Nup49-Nup57 complex, a module with Phe-Gly (FG) repeats, to the central transport channel of the nuclear pore complex (NPC). Nic96 binds the Nsp1 complex via its N domain and assembles into the NPC framework via its central and C domain. Here, we report the crystal structure of a large structural nucleoporin, Nic96 without its N domain (Nic96DeltaN). Nic96DeltaN is composed of three domains and is a straight molecule that--although almost entirely helical--exhibits strong deviations from the predicted alpha-solenoid fold. The missing N domain projects midway from the Nic96 molecule, indicating how the Nsp1 complex might be located with respect to the rod-like Nic96. Notably, Nic96DeltaN binds in vitro to FG repeats of the Nsp1 complex. These data suggest a model of how Nic96 could organize a transport module with coiled-coil domains and FG repeats in the central pore channel.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Membrana/química , Complexo de Proteínas Formadoras de Poros Nucleares/química , Poro Nuclear/química , Proteínas Nucleares/química , Mapeamento de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas de Ligação ao Cálcio/ultraestrutura , Cristalografia por Raios X , Proteínas de Membrana/genética , Proteínas de Membrana/ultraestrutura , Microscopia Eletrônica , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Poro Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Proteínas Nucleares/genética , Proteínas Nucleares/ultraestrutura , Mutação Puntual , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Sequências Repetitivas de Aminoácidos , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Relação Estrutura-Atividade
10.
Nat Cell Biol ; 9(7): 788-96, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17546040

RESUMO

Nucleocytoplasmic transport occurs through nuclear pore complexes (NPCs) embedded in the nuclear envelope. Here, we discovered an unexpected role for yeast dynein light chain (Dyn2) in the NPC. Dyn2 is a previously undescribed nucleoporin that functions as molecular glue to dimerize and stabilize the Nup82-Nsp1-Nup159 complex, a module of the cytoplasmic pore filaments. Biochemical analyses showed that Dyn2 binds to a linear motif (termed DID(Nup159)) inserted between the Phe-Gly repeat and coiled-coil domain of Nup159. Electron microscopy revealed that the reconstituted Dyn2-DID(Nup159) complex forms a rigid rod-like structure, in which five Dyn2 homodimers align like 'pearls on a string' between two extented DID(Nup159) strands. These findings imply that the rigid 20 nm long Dyn2-DID(Nup159) filament projects the Nup159 Phe-Gly repeats from the Nup82 module. Thus, it is possible that dynein light chain plays a role in organizing natively unfolded Phe-Gly repeats within the NPC scaffold to facilitate nucleocytoplasmic transport.


Assuntos
Dineínas/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Poro Nuclear/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Dimerização , Humanos , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína
11.
J Biol Chem ; 280(18): 18442-51, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15741174

RESUMO

About 30 different nucleoporins (Nups) constitute the nuclear pore complex. We have affinity-purified 28 of these nuclear pore proteins and identified new nucleoporin interactions by this analysis. We found that Nup157 and Nup170, two members of the large structural Nups, and the Gly-Leu-Phe-Gly nucleoporin Nup145N specifically co-purified with members of the Nup84 complex. In addition, Nup145N co-enriched during Nup157 purification. By in vitro reconstitution, we demonstrate that Nup157 and Nup145N form a nucleoporin subcomplex. Moreover, we show that Nup157 and Nup145N bind to the heptameric Nup84 complex. This assembly thus represents approximately one-third of all nucleoporins. To characterize Nup157 structurally, we purified and analyzed it by electron microscopy. Nup157 is a hollow sphere that resembles a clamp or a gripping hand. Thus, we could reconstitute an interaction between a large structural Nup, an FG repeat Nup, and a major structural module of the nuclear pore complex.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Dimerização , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Mapeamento de Interação de Proteínas , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura
12.
Nature ; 425(6954): 188-91, 2003 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-12968183

RESUMO

Protein modification by ubiquitin is emerging as a signal for various biological processes in eukaryotes, including regulated proteolysis, but also for non-degradative functions such as protein localization, DNA repair and regulation of chromatin structure. A small ubiquitin-related modifier (SUMO) uses a similar conjugation system that sometimes counteracts the effects of ubiquitination. Ubiquitin and SUMO compete for modification of proliferating cell nuclear antigen (PCNA), an essential processivity factor for DNA replication and repair. Whereas multi-ubiquitination is mediated by components of the RAD6 pathway and promotes error-free repair, SUMO modification is associated with replication. Here we show that RAD6-mediated mono-ubiquitination of PCNA activates translesion DNA synthesis by the damage-tolerant polymerases eta and zeta in yeast. Moreover, polymerase zeta is differentially affected by mono-ubiquitin and SUMO modification of PCNA. Whereas ubiquitination is required for damage-induced mutagenesis, both SUMO and mono-ubiquitin contribute to spontaneous mutagenesis in the absence of DNA damage. Our findings assign a function to SUMO during S phase and demonstrate how ubiquitin and SUMO, by regulating the accuracy of replication and repair, contribute to overall genomic stability.


Assuntos
Dano ao DNA , Mutagênese , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Ligases/metabolismo , Modelos Biológicos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fase S , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Enzimas de Conjugação de Ubiquitina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA