RESUMO
Glioma represents the most common central nervous system neoplasm in adults. Current classification scheme utilizes molecular alterations, particularly IDH1.R132H, to stratify lesions into distinct prognostic groups. Identification of the single nucleotide variant through traditional tissue biopsy assessment poses procedural risks and does not fully reflect the heterogeneous and evolving tumor landscape. Here, we introduce a liquid biopsy assay, mt-IDH1dx. The blood-based test allows minimally invasive detection of tumor-derived extracellular vesicle RNA using only 2 ml plasma volume. We perform rigorous, blinded validation testing across the study population (n = 133), comprising of IDH1.R132H patients (n = 80), IDH1 wild-type gliomas (n = 44), and age matched healthy controls (n = 9). Results from our plasma testing demonstrate an overall sensitivity of 75.0% (95% CI: 64.1%-84.0%), specificity 88.7% (95% CI: 77.0%-95.7%), positive predictive value 90.9%, and negative predictive value 70.1% compared to the tissue gold standard. In addition to fundamental diagnostic applications, the study also highlights the utility of mt-IDH1dx platform for blood-based monitoring and surveillance, offering valuable prognostic information. Finally, the optimized workflow enables rapid and efficient completion of both tumor tissue and plasma testing in under 4 hours from the time of sampling.
Assuntos
Neoplasias Encefálicas , Glioma , Isocitrato Desidrogenase , Mutação , Humanos , Isocitrato Desidrogenase/genética , Glioma/genética , Glioma/sangue , Glioma/diagnóstico , Glioma/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Biópsia Líquida/métodos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/sangue , Neoplasias Encefálicas/diagnóstico , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Sensibilidade e Especificidade , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Estudos de Casos e ControlesRESUMO
Neurofibromatosis type 1 (NF1) is a rare autosomal dominant disorder characterized by proliferation of cells from neural crest origin. The most common manifestations are cutaneous, neurologic, skeletal and ocular. The distinction of NF1 from other syndromes with multiple café-au-lait macules may be difficult in the pediatric age group, and ocular findings, especially Lisch nodules (i.e., melanocytic hamartomas on the irides), are a useful, early diagnostic tool. In recent years, novel ocular manifestations descriptively referred to as "choroidal abnormalities", choroidal "hyperpigmented spots" and "retinal vascular abnormalities" have been recognized in NF1. Choroidal abnormalities (CA) appear as bright patchy nodules that can be best detected with near-infrared ocular coherence tomography imaging (NIR-OCT). Because of their high specificity and sensitivity for NF1, CA have been added as an ocular diagnostic criterion of NF1 as an alternative to Lisch nodules. Although CA are important ocular diagnostic criteria for NF1, the histologic correlates are controversial. We present the postmortem ocular pathology findings of an NF1 patient for whom clinical notes and ocular imaging were available. Findings in this patient included choroidal hyperpigmented spots on funduscopy and retinal vascular abnormalities, both of which have been reported to be closely associated with CA. Histologic examination of the eyes showed multiple clusters of melanocytes of varying sizes in the choroid. Pathologic review of 12 additional postmortem eyes from 6 NF1 patients showed multiple, bilateral choroidal melanocytic aggregates in all eyes. These findings suggest that the CA seen on NIR-OCT and the hyperpigmented spots seen clinically in NF1 patients are manifestations of multifocal choroidal melanocytic clusters, consistent with choroidal melanocytic hamartomas. Lisch nodules, often multiple, were present in all eyes with morphology that differed from the choroidal hamartomas. As such, although CA and Lisch nodules are melanocytic hamartomas, there are clear phenotypical differences in their morphologies.
Assuntos
Hamartoma , Neurofibromatose 1 , Humanos , Criança , Neurofibromatose 1/complicações , Corioide/diagnóstico por imagem , AutopsiaRESUMO
Immune checkpoint blockade (CPB) improves melanoma outcomes, but many patients still do not respond. Tumor mutational burden (TMB) and tumor-infiltrating T cells are associated with response, and integrative models improve survival prediction. However, integrating immune/tumor-intrinsic features using data from a single assay (DNA/RNA) remains underexplored. Here, we analyze whole-exome and bulk RNA sequencing of tumors from new and published cohorts of 189 and 178 patients with melanoma receiving CPB, respectively. Using DNA, we calculate T cell and B cell burdens (TCB/BCB) from rearranged TCR/Ig sequences and find that patients with TMBhigh and TCBhigh or BCBhigh have improved outcomes compared to other patients. By combining pairs of immune- and tumor-expressed genes, we identify three gene pairs associated with response and survival, which validate in independent cohorts. The top model includes lymphocyte-expressed MAP4K1 and tumor-expressed TBX3. Overall, RNA or DNA-based models combining immune and tumor measures improve predictions of melanoma CPB outcomes.
Assuntos
Melanoma , Transcriptoma , Humanos , Melanoma/tratamento farmacológico , RNA , Análise de Sequência de RNA , Transcriptoma/genética , Sequenciamento do ExomaRESUMO
B-lymphoblastic leukemia/lymphoma (B-ALL) is the most common pediatric malignancy and the most commonly diagnosed adult lymphoblastic leukemia. Recent advances have broadened the spectrum of B-ALL, with DUX4 gene fusions implicated in a subclass occurring in adolescents and young adults and harboring a favorable prognosis. DUX4 fusions have been challenging to identify. We aimed to determine whether expression of the DUX4 oncoprotein, as detected by targeted immunohistochemistry, might serve as a surrogate for molecular detection of DUX4 fusions in B-ALL. A cohort of investigational B-ALLs was generated with enrichment for DUX4 fusions by the inclusion of cases with characteristic demographic features and immunophenotypic properties. B-ALLs with mutually exclusive cytogenetics were collected. Immunohistochemical staining by a monoclonal antibody raised against the N-terminus of the DUX4 protein was performed. N-DUX4 immunohistochemistry demonstrated strong, crisp nuclear staining in blasts of seven investigational cases, six of which had nucleic acid material available for molecular evaluation. Five of these cases demonstrated RNA-seq DUX4-fusion positivity. One N-DUX4 immunohistochemistry positive case lacked a definitive DUX4-fusion by RNA-seq, though demonstrated a gene expression profile characteristic of DUX4-rearranged B-ALLs, a CD2+ immunophenotype, and a lack of staining by C-terminus DUX4 antibody immunohistochemistry. At least 83.3% [5/6] positive predictive value. N-DUX4 immunohistochemistry was negative in blasts of three RNA-seq DUX4-fusion-negative cases (3/3; 100% negative predictive value). B-ALLs with mutually exclusive cytogenetic profiles were all N-DUX4 negative (0/10, specificity 100%). N-DUX4 immunohistochemistry is reliable for the distinction of DUX4-rearranged B-ALLs from other B-ALLs. We recommend its use for subclassification of B-ALLs in adolescents and young adults and in B-ALLs that remain "not otherwise specified."
Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Criança , Fusão Gênica , Humanos , Imuno-Histoquímica , Imunofenotipagem , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Adulto JovemRESUMO
Neurofibromatosis Type 2 (NF2) is an autosomal dominant genetic syndrome caused by mutations in the NF2 tumor suppressor gene resulting in multiple schwannomas and meningiomas. There are no FDA approved therapies for these tumors and their relentless progression results in high rates of morbidity and mortality. Through a combination of high throughput screens, preclinical in vivo modeling, and evaluation of the kinome en masse, we identified actionable drug targets and efficacious experimental therapeutics for the treatment of NF2 related schwannomas and meningiomas. These efforts identified brigatinib (ALUNBRIG®), an FDA-approved inhibitor of multiple tyrosine kinases including ALK, to be a potent inhibitor of tumor growth in established NF2 deficient xenograft meningiomas and a genetically engineered murine model of spontaneous NF2 schwannomas. Surprisingly, neither meningioma nor schwannoma cells express ALK. Instead, we demonstrate that brigatinib inhibited multiple tyrosine kinases, including EphA2, Fer and focal adhesion kinase 1 (FAK1). These data demonstrate the power of the de novo unbiased approach for drug discovery and represents a major step forward in the advancement of therapeutics for the treatment of NF2 related malignancies.
Assuntos
Neoplasias Meníngeas/genética , Meningioma/genética , Neurilemoma/genética , Neurofibromina 2/deficiência , Neurofibromina 2/genética , Compostos Organofosforados/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Proliferação de Células , Humanos , Mutação , Neurilemoma/patologiaRESUMO
The metabolic gene isocitrate dehydrogenase 1 (IDH1) is commonly mutated in lower grade glioma (LGG) and secondary glioblastoma (GBM). Regulatory T cells (Tregs) play a significant role in the suppression of antitumor immunity in human glioma. Given the importance of Tregs in the overall framework of designing immune-based therapies, a better understanding on their association with IDH mutational status remains of critical clinical importance. Using multispectral imaging analysis, we compared the incidence of Tregs in IDH-mutant and IDH wild-type glioma from patient tumor samples of LGG. An orthotopic IDH-mutant murine model was generated to evaluate the role of mutant IDH on Treg infiltration by immunohistochemistry. When compared to IDH wild-type controls, Tregs are disproportionally underrepresented in mutant disease, even when taken as a proportion of all infiltrating T cells. Our findings suggest that therapeutic agents targeting Tregs may be more appropriate in modulating the immune response to wild-type disease.
Assuntos
Neoplasias Encefálicas , Glioma , Animais , Neoplasias Encefálicas/genética , Glioma/genética , Humanos , Isocitrato Desidrogenase/genética , Camundongos , Mutação , Linfócitos T ReguladoresRESUMO
Introduction: Carbon monoxide (CO) poisoning causes hypoxia and inflammation, which could adversely affect muscle. We could find no published information about CO poisoning causing myositis. Case report: A 53-year-old previously healthy female semi truck driver had CO poisoning from a faulty diesel engine exhaust intermittently over three months, culminating in an episode of acute CO poisoning, with syncope after exiting the truck at the end of the three-month period. Neuropsychological symptoms immediately after the acute poisoning event were followed by the development of fatigue, weakness and myalgias within two months and a diagnosis of "polymyositis" within four months. C-reactive protein and creatine kinase were elevated. Electromyogram showed pure myopathy without sensory abnormalities. Occult malignancy was ruled out. Thigh muscle biopsy revealed severe inflammatory myopathy and myonecrosis. Muscle specialist pathologists interpreted the biopsy as toxic or viral inflammatory myopathy, not polymyositis, with CO poisoning as the likely etiology. She received steroids and mycophenolate. Nineteen months later, a repeat biopsy was negative for inflammation or myopathic process. Alternative diagnoses were ruled out by clinical investigation and her course over the next five years. Conclusion: This patient's presentation and clinical course support a diagnosis of myositis from CO poisoning, although it is possible that the myositis was either idiopathic or post-viral (without evidence of a causative virus).
Assuntos
Intoxicação por Monóxido de Carbono/complicações , Miosite/etiologia , Doenças Profissionais/complicações , Condução de Veículo , Intoxicação por Monóxido de Carbono/sangue , Carboxihemoglobina/análise , Feminino , Humanos , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Síncope/etiologiaRESUMO
Neurofibromatosis Type 1 (NF1) is a genetic disease caused by mutations in Neurofibromin 1 (NF1). NF1 patients present with a variety of clinical manifestations and are predisposed to cancer development. Many NF1 animal models have been developed, yet none display the spectrum of disease seen in patients and the translational impact of these models has been limited. We describe a minipig model that exhibits clinical hallmarks of NF1, including café au lait macules, neurofibromas, and optic pathway glioma. Spontaneous loss of heterozygosity is observed in this model, a phenomenon also described in NF1 patients. Oral administration of a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor suppresses Ras signaling. To our knowledge, this model provides an unprecedented opportunity to study the complex biology and natural history of NF1 and could prove indispensable for development of imaging methods, biomarkers, and evaluation of safety and efficacy of NF1-targeted therapies.
RESUMO
Progressive meningiomas that have failed surgery and radiation have a poor prognosis and no standard therapy. While meningiomas are more common in females overall, progressive meningiomas are enriched in males. We performed a comprehensive molecular characterization of 169 meningiomas from 53 patients with progressive/high-grade tumors, including matched primary and recurrent samples. Exome sequencing in an initial cohort (n = 24) detected frequent alterations in genes residing on the X chromosome, with somatic intragenic deletions of the dystrophin-encoding and muscular dystrophy-associated DMD gene as the most common alteration (n = 5, 20.8%), along with alterations of other known X-linked cancer-related genes KDM6A (n =2, 8.3%), DDX3X, RBM10 and STAG2 (n = 1, 4.1% each). DMD inactivation (by genomic deletion or loss of protein expression) was ultimately detected in 17/53 progressive meningioma patients (32%). Importantly, patients with tumors harboring DMD inactivation had a shorter overall survival (OS) than their wild-type counterparts [5.1 years (95% CI 1.3-9.0) vs. median not reached (95% CI 2.9-not reached, p = 0.006)]. Given the known poor prognostic association of TERT alterations in these tumors, we also assessed for these events, and found seven patients with TERT promoter mutations and three with TERT rearrangements in this cohort (n = 10, 18.8%), including a recurrent novel RETREG1-TERT rearrangement that was present in two patients. In a multivariate model, DMD inactivation (p = 0.033, HR = 2.6, 95% CI 1.0-6.6) and TERT alterations (p = 0.005, HR = 3.8, 95% CI 1.5-9.9) were mutually independent in predicting unfavorable outcomes. Thus, DMD alterations identify a subset of progressive/high-grade meningiomas with worse outcomes.
Assuntos
Distrofina/genética , Deleção de Genes , Neoplasias Meníngeas/genética , Meningioma/genética , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral/patologia , Linhagem Celular Tumoral/ultraestrutura , Estudos de Coortes , Progressão da Doença , Distrofina/metabolismo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/patologia , Meningioma/diagnóstico por imagem , Meningioma/patologia , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex , RNA Mensageiro/metabolismo , Cromatina Sexual/genética , Telomerase/genética , Telomerase/metabolismo , Sequenciamento do ExomaRESUMO
The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.
Assuntos
Astrócitos/metabolismo , Neoplasias Encefálicas/terapia , Dependovirus/genética , Terapia Genética , Interferon beta/genética , Células Estromais/metabolismo , Animais , Astrócitos/citologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Regiões Promotoras Genéticas , Células Estromais/citologiaRESUMO
Malignant peripheral nerve sheath tumors (MPNSTs) are highly aggressive Schwann cell (SC)-lineage-derived sarcomas. Molecular events driving SC-to-MPNST transformation are incompletely understood. Here, we show that human MPNSTs exhibit elevated HIPPO-TAZ/YAP expression, and that TAZ/YAP hyperactivity in SCs caused by Lats1/2 loss potently induces high-grade nerve-associated tumors with full penetrance. Lats1/2 deficiency reprograms SCs to a cancerous, progenitor-like phenotype and promotes hyperproliferation. Conversely, disruption of TAZ/YAP activity alleviates tumor burden in Lats1/2-deficient mice and inhibits human MPNST cell proliferation. Moreover, genome-wide profiling reveals that TAZ/YAP-TEAD1 directly activates oncogenic programs, including platelet-derived growth factor receptor (PDGFR) signaling. Co-targeting TAZ/YAP and PDGFR pathways inhibits tumor growth. Thus, our findings establish a previously unrecognized convergence between Lats1/2-TAZ/YAP signaling and MPNST pathogenesis, revealing potential therapeutic targets in these untreatable tumors.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Células de Schwann/citologia , Animais , Proteínas de Ciclo Celular , Diferenciação Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica , Humanos , Camundongos , Transdução de Sinais/genética , Fatores de Transcrição , Proteínas de Sinalização YAPRESUMO
Ex vivo systems that incorporate features of the tumor microenvironment and model the dynamic response to immune checkpoint blockade (ICB) may facilitate efforts in precision immuno-oncology and the development of effective combination therapies. Here, we demonstrate the ability to interrogate ex vivo response to ICB using murine- and patient-derived organotypic tumor spheroids (MDOTS/PDOTS). MDOTS/PDOTS isolated from mouse and human tumors retain autologous lymphoid and myeloid cell populations and respond to ICB in short-term three-dimensional microfluidic culture. Response and resistance to ICB was recapitulated using MDOTS derived from established immunocompetent mouse tumor models. MDOTS profiling demonstrated that TBK1/IKKε inhibition enhanced response to PD-1 blockade, which effectively predicted tumor response in vivo Systematic profiling of secreted cytokines in PDOTS captured key features associated with response and resistance to PD-1 blockade. Thus, MDOTS/PDOTS profiling represents a novel platform to evaluate ICB using established murine models as well as clinically relevant patient specimens.Significance: Resistance to PD-1 blockade remains a challenge for many patients, and biomarkers to guide treatment are lacking. Here, we demonstrate feasibility of ex vivo profiling of PD-1 blockade to interrogate the tumor immune microenvironment, develop therapeutic combinations, and facilitate precision immuno-oncology efforts. Cancer Discov; 8(2); 196-215. ©2017 AACR.See related commentary by Balko and Sosman, p. 143See related article by Deng et al., p. 216This article is highlighted in the In This Issue feature, p. 127.
Assuntos
Antineoplásicos Imunológicos/farmacologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Citocinas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Imunofenotipagem , Camundongos , Técnicas Analíticas Microfluídicas , Receptor de Morte Celular Programada 1/metabolismo , Esferoides Celulares , Imagem com Lapso de Tempo , Células Tumorais CultivadasRESUMO
OBJECTIVE Patients with atypical and malignant (WHO Grade II and III) meningiomas have a worse prognosis than patients with benign (WHO Grade I) meningiomas. However, there is limited understanding of the pathological risk factors that affect long-term tumor control following combined treatment with surgery and radiation therapy. Here, the authors identify clinical and histopathological risk factors for the progression and/or recurrence (P/R) of high-grade meningiomas based on the largest series of patients with atypical and malignant meningiomas, as defined by the 2007 WHO classification. METHODS Patients diagnosed with WHO Grade II and III meningiomas between 2007 and 2014 per the WHO 2007 criteria and treated with both surgery and external beam radiation therapy were retrospectively reviewed for clinical and histopathological factors at the time of diagnosis and assessed for P/R outcomes at the last available follow-up. RESULTS A total of 76 patients met the inclusion criteria (66 Grade II meningiomas, 10 Grade III meningiomas). Median follow-up from the time of pathological diagnosis was 52.6 months. Three factors were found to predict P/R: Grade III histology, brain and/or bone invasion, and a Ki-67 proliferation rate at or above 3%. The crude P/R rate was 80% for patients with Grade III histology, 40% for those with brain and/or bone involvement (regardless of WHO tumor grade), and 20% for those with a proliferative index ≥ 3% (regardless of WHO tumor grade). The median proliferation index was significantly different between patients in whom treatment failed and those in whom it did not fail (11% and 1%, respectively). CONCLUSIONS In patients with atypical or malignant meningiomas, the presence of Grade III histology, brain and/or bone involvement, and a high mitotic index significantly predicted an increased risk of treatment failure despite combination therapy. These patients can be stratified into risk groups predicting P/R. Patients with high-risk features may benefit from more treatment and counseling than is typically offered currently.
Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Meningioma/patologia , Meningioma/terapia , Adulto , Idoso , Neoplasias Encefálicas/radioterapia , Proliferação de Células , Terapia Combinada , Progressão da Doença , Feminino , Humanos , Antígeno Ki-67 , Masculino , Meningioma/radioterapia , Pessoa de Meia-Idade , Índice Mitótico , Gradação de Tumores , Invasividade Neoplásica , Procedimentos Neurocirúrgicos , Prognóstico , Recidiva , Estudos Retrospectivos , Medição de Risco , Neoplasias da Base do Crânio/patologia , Neoplasias da Base do Crânio/radioterapia , Neoplasias da Base do Crânio/terapia , Falha de TratamentoRESUMO
Proliferative diabetic retinopathy (PDR) is a common cause of blindness in the developed world's working adult population and affects those with type 1 and type 2 diabetes. We identified Runt-related transcription factor 1 (RUNX1) as a gene upregulated in CD31+ vascular endothelial cells obtained from human PDR fibrovascular membranes (FVMs) via transcriptomic analysis. In vitro studies using human retinal microvascular endothelial cells (HRMECs) showed increased RUNX1 RNA and protein expression in response to high glucose, whereas RUNX1 inhibition reduced HRMEC migration, proliferation, and tube formation. Immunohistochemical staining for RUNX1 showed reactivity in vessels of patient-derived FVMs and angiogenic tufts in the retina of mice with oxygen-induced retinopathy, suggesting that RUNX1 upregulation is a hallmark of aberrant retinal angiogenesis. Inhibition of RUNX1 activity with the Ro5-3335 small molecule resulted in a significant reduction of neovascular tufts in oxygen-induced retinopathy, supporting the feasibility of targeting RUNX1 in aberrant retinal angiogenesis.
Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Retinopatia Diabética/genética , Células Endoteliais/metabolismo , Retina/metabolismo , Neovascularização Retiniana/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Feminino , Glucose/farmacologia , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Oxigênio/efeitos adversos , RNA Mensageiro/metabolismo , Neovascularização Retiniana/metabolismoRESUMO
Malignant gliomas exhibit extensive heterogeneity and poor prognosis. Here we identify mitotic Olig2-expressing cells as tumor-propagating cells in proneural gliomas, elimination of which blocks tumor initiation and progression. Intriguingly, deletion of Olig2 resulted in tumors that grow, albeit at a decelerated rate. Genome occupancy and expression profiling analyses reveal that Olig2 directly activates cell-proliferation machinery to promote tumorigenesis. Olig2 deletion causes a tumor phenotypic shift from an oligodendrocyte precursor-correlated proneural toward an astroglia-associated gene expression pattern, manifest in downregulation of platelet-derived growth factor receptor-α and reciprocal upregulation of epidermal growth factor receptor (EGFR). Olig2 deletion further sensitizes glioma cells to EGFR inhibitors and extends the lifespan of animals. Thus, Olig2-orchestrated receptor signaling drives mitotic growth and regulates glioma phenotypic plasticity. Targeting Olig2 may circumvent resistance to EGFR-targeted drugs.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proliferação de Células/genética , Receptores ErbB/genética , Glioma/genética , Proteínas do Tecido Nervoso/genética , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Animais , Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Glioma/metabolismo , Glioma/patologia , Humanos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/metabolismo , Fenótipo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Esferoides Celulares/metabolismo , Análise de SobrevidaRESUMO
To identify genes and signaling pathways that initiate Neurofibromatosis type 1 (NF1) neurofibromas, we used unbiased insertional mutagenesis screening, mouse models, and molecular analyses. We mapped an Nf1-Stat3-Arid1b/ß-catenin pathway that becomes active in the context of Nf1 loss. Genetic deletion of Stat3 in Schwann cell progenitors (SCPs) and Schwann cells (SCs) prevents neurofibroma formation, decreasing SCP self-renewal and ß-catenin activity. ß-catenin expression rescues effects of Stat3 loss in SCPs. Importantly, P-STAT3 and ß-catenin expression correlate in human neurofibromas. Mechanistically, P-Stat3 represses Gsk3ß and the SWI/SNF gene Arid1b to increase ß-catenin. Knockdown of Arid1b or Gsk3ß in Stat3(fl/fl);Nf1(fl/fl);DhhCre SCPs rescues neurofibroma formation after in vivo transplantation. Stat3 represses Arid1b through histone modification in a Brg1-dependent manner, indicating that epigenetic modification plays a role in early tumorigenesis. Our data map a neural tumorigenesis pathway and support testing JAK/STAT and Wnt/ß-catenin pathway inhibitors in neurofibroma therapeutic trials.
Assuntos
Carcinogênese/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Acetiltransferase N-Terminal A/genética , Neurofibromatose 1/genética , Neoplasias do Sistema Nervoso Periférico/genética , Fator de Transcrição STAT3/genética , beta Catenina/genética , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Camundongos Nus , Mutagênese Insercional , Acetiltransferase N-Terminal A/antagonistas & inibidores , Acetiltransferase N-Terminal A/metabolismo , Transplante de Neoplasias , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurofibromatose 1/metabolismo , Neurofibromatose 1/patologia , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neoplasias do Sistema Nervoso Periférico/metabolismo , Neoplasias do Sistema Nervoso Periférico/patologia , Fosforilação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Células de Schwann/metabolismo , Células de Schwann/patologia , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta Catenina/metabolismoRESUMO
Gain-of-function IDH mutations are initiating events that define major clinical and prognostic classes of gliomas. Mutant IDH protein produces a new onco-metabolite, 2-hydroxyglutarate, which interferes with iron-dependent hydroxylases, including the TET family of 5'-methylcytosine hydroxylases. TET enzymes catalyse a key step in the removal of DNA methylation. IDH mutant gliomas thus manifest a CpG island methylator phenotype (G-CIMP), although the functional importance of this altered epigenetic state remains unclear. Here we show that human IDH mutant gliomas exhibit hypermethylation at cohesin and CCCTC-binding factor (CTCF)-binding sites, compromising binding of this methylation-sensitive insulator protein. Reduced CTCF binding is associated with loss of insulation between topological domains and aberrant gene activation. We specifically demonstrate that loss of CTCF at a domain boundary permits a constitutive enhancer to interact aberrantly with the receptor tyrosine kinase gene PDGFRA, a prominent glioma oncogene. Treatment of IDH mutant gliomaspheres with a demethylating agent partially restores insulator function and downregulates PDGFRA. Conversely, CRISPR-mediated disruption of the CTCF motif in IDH wild-type gliomaspheres upregulates PDGFRA and increases proliferation. Our study suggests that IDH mutations promote gliomagenesis by disrupting chromosomal topology and allowing aberrant regulatory interactions that induce oncogene expression.
Assuntos
Regulação Neoplásica da Expressão Gênica , Glioma/enzimologia , Glioma/genética , Elementos Isolantes/genética , Isocitrato Desidrogenase/genética , Mutação/genética , Oncogenes/genética , Sequência de Bases , Sítios de Ligação , Fator de Ligação a CCCTC , Sistemas CRISPR-Cas/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Células Cultivadas , Cromatina/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Ilhas de CpG/genética , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Regulação para Baixo/efeitos dos fármacos , Elementos Facilitadores Genéticos/genética , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/tratamento farmacológico , Glioma/patologia , Glutaratos/metabolismo , Humanos , Elementos Isolantes/efeitos dos fármacos , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , Fenótipo , Ligação Proteica , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Repressoras/metabolismo , Regulação para Cima , CoesinasRESUMO
BACKGROUND: Risk stratification of meningiomas by histopathological grade alone does not reliably predict which patients will progress/recur after treatment. We sought to determine whether preoperative imaging and clinical characteristics could predict histopathological grade and/or improve prognostication of progression/recurrence (P/R). METHODS: We retrospectively reviewed preoperative MR and CT imaging features of 144 patients divided into low-grade (2007 WHO grade I; n = 118) and high-grade (2007 WHO grades II/III; n = 26) groups that underwent surgery between 2002 and 2013 (median follow-up of 49 months). RESULTS: Multivariate analysis demonstrated that the risk factors most strongly associated with high-grade histopathology were male sex, low apparent diffusion coefficient (ADC), absent calcification, and high peritumoral edema. Remarkably, multivariate Cox proportional hazards analysis demonstrated that, in combination with extent of resection, ADC outperformed WHO histopathological grade for predicting which patients will suffer P/R after initial treatment. Stratification of patients into 3 risk groups based on non-Simpson grade I resection and low ADC as risk factors correlated with the likelihood of P/R (P < .001). The high-risk group (2 risk factors; n = 39) had a 45% cumulative incidence of P/R, whereas the low-risk group (0 risk factors; n = 31) had no P/R events at 5 years after treatment. Independent of histopathological grade, high-risk patients who received adjuvant radiotherapy had a lower 5-year crude rate of P/R than those without (17% vs 59%; P = .04). CONCLUSIONS: Patients with non-Simpson grade I resection and low ADC meningiomas are at significantly increased risk of P/R and may benefit from adjuvant radiotherapy and/or additional surgery.