Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Ther Deliv ; 15(9): 699-716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39101355

RESUMO

Aim: Benznidazole (BNZ), a class-II drug, is the primary treatment for Chagas disease, but its low aqueous solubility presents challenges in formulation and efficacy. Nanosuspensions (NS) could potentially address these issues.Methods: BNZ-NS were prepared using a simple, organic solvents-free nano-milling approach. Physicochemical characterizations were conducted on both NS and lyophilized solid-state BNZ-nanocrystals (NC).Results: BNZ-NS exhibited particle size <500 nm, an acceptable polydispersity index (0.23), high Z-potential, and physical stability for at least 90 days. BNZ-NC showed tenfold higher solubility than pure BNZ. Dissolution assays revealed rapid BNZ-NS dissolution. BNZ-NC demonstrated biocompatibility on an eukaryotic cell and enhanced BNZ efficacy against trypomastigotes of Trypanosoma cruzi.Conclusion: BNZ-NS offers a promising alternative, overcoming limitations associated with BNZ for optimized pharmacotherapy.


[Box: see text].


Assuntos
Doença de Chagas , Nanopartículas , Nitroimidazóis , Tamanho da Partícula , Solubilidade , Tripanossomicidas , Trypanosoma cruzi , Nitroimidazóis/química , Nitroimidazóis/administração & dosagem , Doença de Chagas/tratamento farmacológico , Trypanosoma cruzi/efeitos dos fármacos , Nanopartículas/química , Tripanossomicidas/administração & dosagem , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Animais , Humanos , Suspensões , Estabilidade de Medicamentos , Química Farmacêutica/métodos , Solventes/química , Liofilização
2.
Am J Cancer Res ; 14(7): 3626-3638, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113863

RESUMO

Anaplastic thyroid cancer (ATC) is a clinically aggressive form of undifferentiated thyroid cancer with limited treatment options. Tumor-associated macrophages (TAMs) constitute over 50% of ATC-infiltrating cells, and their presence is associated with a poor prognosis. We have previously shown that paracrine signals released by ATC cells induced pro-tumor M2-like polarization of human monocytes. However, which soluble factors derived from ATC cells drive monocyte activation, are largely unknown. In this study we investigated the participation of transforming growth factor ß1 (TGFß1) on the phenotype of macrophage activation induced by ATC cell-derived conditioned media (CM). THP-1 cells exposed to CM derived from ATC cells and recombinant human TGFß1 induced M2-like macrophage polarization, showing high CD163 and Dectin1 expression. Moreover, we showed that TGFß1 induced the messenger RNA (mRNA) and protein expression of the transcription factors SNAIL and SLUG. Accordingly, increased TGFß1 secretion from ATC cells was confirmed by enzyme-linked immunosorbent assay (ELISA). Addition of SB431542, a TGFß receptor inhibitor, significantly decreased the Dectin1, CD163, SNAIL and SLUG expression stimulated by ATC cell-derived CM. We validated the clinical significance of the expression of TGFß ligands, their receptors, as well as SNAIL and SLUG in human ATC by analyzing public microarray datasets. We found that the expression of the main TGFß ligands, TGFß1 and TGFß3, along with their receptors, TGFR1 and TGFR2, as well as SLUG, was significantly higher in human ATC tissue samples than in normal thyroid tissues. Our findings indicate that ATC cell-secreted TGFß1 may play a key role in M2-like macrophage polarization of human monocytes and in the up-regulation of SNAIL and SLUG transcription factors. Thus, ours results uncovered a novel mechanism involved in the activation of TAMs by soluble factors released by ATC cells, which suggest potential therapeutic targets for ATC.

3.
Front Microbiol ; 15: 1423995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035445

RESUMO

Streptococcus pneumoniae is a major pathogen responsible for severe complications in patients with prior influenza A virus (IAV) infection. We have previously demonstrated that S. pneumoniae exhibits increased intracellular survival within IAV-infected cells. Fluoroquinolones (FQs) are widely used to treat pneumococcal infections. However, our prior work has shown that S. pneumoniae can develop intracellular FQ persistence, a phenomenon triggered by oxidative stress within host cells. This persistence allows the bacteria to withstand high FQ concentrations. In this study, we show that IAV infection enhances pneumococcal FQ persistence during intracellular survival within pneumocytes, macrophages, and neutrophils. This enhancement is partly due to increased oxidative stress induced by the viral infection. We find that this phenotype is particularly pronounced in autophagy-proficient host cells, potentially resulting from IAV-induced blockage of autophagosome-lysosome fusion. Moreover, we identified several S. pneumoniae genes involved in oxidative stress response that contribute to FQ persistence, including sodA (superoxide dismutase), clpL (chaperone), nrdH (glutaredoxin), and psaB (Mn+2 transporter component). Our findings reveal a novel mechanism of antibiotic persistence promoted by viral infection within host cells. This underscores the importance of considering this phenomenon when using FQs to treat pneumococcal infections, especially in patients with concurrent influenza A infection.

4.
Microbes Infect ; 26(5-6): 105337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38615883

RESUMO

The thymus plays a crucial role in T cell differentiation, a complex process influenced by various factors such as antigens, the microenvironment and thymic architecture. The way the thymus resolves infections is critical, as chronic persistence of microbes or inflammatory mediators can obstruct the differentiation. Here, we illustrate that following inflammatory T helper 1 infectious processes like those caused by Candida albicans or Trypanosoma cruzi, single positive thymocytes adopt a mature phenotype. Further investigations focused on T. cruzi infection, reveal a substantial existence of CD44+ cells in both the cortical and medullary areas of the thymus at the onset of infection. This disturbance coincides with heightened interferon gamma (IFNγ) production by thymocytes and an increased cytotoxic capacity against T. cruzi-infected macrophages. Additionally, we observe a reduced exportation capacity in T. cruzi-infected mice. Some alterations can be reversed in IFNγ knockout mice (KO). Notably, the majority of these effects can be replicated by systemic expression of interleukin (IL)-12+IL-18, underlining the predominantly inflammatory rather than pathogen-specific nature of these phenomena. Understanding the mechanisms through which systemic inflammation disrupts normal T cell development, as well as subsequent T cell exportation to secondary lymphoid organs (SLO) is pivotal for comprehending susceptibility to diseases in different pathological scenarios.


Assuntos
Doença de Chagas , Citocinas , Camundongos Knockout , Células Th1 , Timo , Trypanosoma cruzi , Animais , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Doença de Chagas/metabolismo , Trypanosoma cruzi/imunologia , Camundongos , Timo/imunologia , Timo/patologia , Células Th1/imunologia , Citocinas/metabolismo , Interferon gama/metabolismo , Interferon gama/imunologia , Camundongos Endogâmicos C57BL , Inflamação/imunologia , Diferenciação Celular
5.
Front Immunol ; 14: 1223730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37809093

RESUMO

This work examines cellular immunity against SARS-CoV-2 in patients from Córdoba, Argentina, during two major waves characterized by different circulating viral variants and different social behavior. Using flow cytometry, we evaluated the main lymphocyte populations of peripheral blood from hospitalized patients with moderate and severe COVID-19 disease. Our results show disturbances in the cellular immune compartment, as previously reported in different cohorts worldwide. We observed an increased frequency of B cells and a significant decrease in the frequency of CD3+ T cells in COVID-19 patients compared to healthy donors (HD). We also found a reduction in Tregs, which was more pronounced in severe patients. During the first wave, the frequency of GZMB, CD107a, CD39, and PD-1-expressing conventional CD4+ T (T conv) cells was significantly higher in moderate and severe patients than in HD. During the second wave, only the GZMB+ T conv cells of moderate and severe patients increased significantly. In addition, these patients showed a decreased frequency in IL-2-producing T conv cells. Interestingly, we identified two subsets of circulating CD8+ T cells with low and high CD8 surface expression in both HD and COVID-19 patients. While the percentages of CD8hi and CD8lo T cells within the CD8+ population in HD are similar, a significant increase was observed in CD8lo T cell frequency in COVID-19 patients. CD8lo T cell populations from HD as well as from SARS-CoV-2 infected patients exhibited lower frequencies of the effector cytokine-producing cells, TNF, IL-2, and IFN-γ, than CD8hi T cells. Interestingly, the frequency of CD8lo T cells increased with disease severity, suggesting that this parameter could be a potential marker for disease progression. Indeed, the CD8hi/CD8lo index helped to significantly improve the patient's clinical stratification and disease outcome prediction. Our data support the addition of, at least, a CD8hi/CD8lo index into the panel of biomarkers commonly used in clinical labs, since its determination may be a useful tool with impact on the therapeutic management of the patients.


Assuntos
COVID-19 , Humanos , Linfócitos T CD8-Positivos , Interleucina-2/metabolismo , SARS-CoV-2 , Subpopulações de Linfócitos , Gravidade do Paciente
6.
Front Immunol ; 14: 1111797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817433

RESUMO

Background: COVID-19 severity has been linked to an increased production of inflammatory mediators called "cytokine storm". Available data is mainly restricted to the first international outbreak and reports highly variable results. This study compares demographic and clinical features of patients with COVID-19 from Córdoba, Argentina, during the first two waves of the pandemic and analyzes association between comorbidities and disease outcome with the "cytokine storm", offering added value to the field. Methods: We investigated serum concentration of thirteen soluble mediators, including cytokines and chemokines, in hospitalized patients with moderate and severe COVID-19, without previous rheumatic and autoimmune diseases, from the central region of Argentina during the first and second infection waves. Samples from healthy controls were also assayed. Clinical and biochemical parameters were collected. Results: Comparison between the two first COVID-19 waves in Argentina highlighted that patients recruited during the second wave were younger and showed less concurrent comorbidities than those from the first outbreak. We also recognized particularities in the signatures of systemic cytokines and chemokines in patients from both infection waves. We determined that concurrent pre-existing comorbidities did not have contribution to serum concentration of systemic cytokines and chemokines in COVID-19 patients. We also identified immunological and biochemical parameters associated to inflammation which can be used as prognostic markers. Thus, IL-6 concentration, C reactive protein level and platelet count allowed to discriminate between death and discharge in patients hospitalized with severe COVID-19 only during the first but not the second wave. Conclusions: Our data provide information that deepens our understanding of COVID-19 pathogenesis linking demographic features of a COVID-19 cohort with cytokines and chemokines systemic concentration, presence of comorbidities and different disease outcomes. Altogether, our findings provide information not only at local level by delineating inflammatory/anti-inflammatory response of patients but also at international level addressing the impact of comorbidities and the infection wave in the variability of cytokine and chemokine production upon SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , Citocinas/metabolismo , SARS-CoV-2/metabolismo , Argentina , Quimiocinas , Síndrome da Liberação de Citocina , Pandemias
7.
Phytochemistry ; 194: 113014, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34798411

RESUMO

This work focusses on the chemical diversification of an Ambrosia tenuifolia extract and its bioguided fractionation, aiming to unveil the chemical entity responsible for the trypanocidal activity. Besides, a revision of the phytochemical study of this species, based on previous reports of the antiparasitic psilostachyins A and C as main compounds, was conducted. To improve the biological properties of a plant extract through a simple chemical reaction, the oxidative diversification of the dichloromethane extract of this plant species was carried out. A bioguided fractionation of a chemically modified extract was performed by evaluating the inhibitory activity against Trypanosoma cruzi trypomastigotes. This experiment led to the isolation of one of the most active compounds. In general terms, epoxidized metabolites were obtained as a result of the oxidation of the major metabolite of the species. The trypanocidal activity of some tested metabolites overperformed the reference drug, benznidazole, displaying no cytotoxicity at trypanocidal concentrations. Key structure-activity relationships were obtained for designing previously undescribed antiparasitic sesquiterpene lactones.


Assuntos
Ambrosia , Trypanosoma cruzi , Extratos Vegetais
8.
Cancers (Basel) ; 13(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638305

RESUMO

Anaplastic thyroid cancer (ATC) is a highly aggressive type of thyroid cancer (TC). Currently, no effective target treatments are available that can improve overall survival, with ATC representing a major clinical challenge because of its remarkable lethality. Tumor-associated macrophages (TAMs) are the most evident cells in ATCs, and their high density is correlated with a poor prognosis. However, the mechanisms of how TAMs promote ATC progression remain poorly characterized. Here, we demonstrated that the treatment of human monocytes (THP-1 cells) with ATC cell-derived conditioned media (CM) promoted macrophage polarization, showing high levels of M2 markers. Furthermore, we found that STAT3 was activated, and this was correlated with an increased expression and secretion of the inflammatory cytokine interleukin-6. Remarkably, the M2-like macrophages obtained revealed tumor-promoting activity. A cytokine array analysis demonstrated that M2-like macrophage-derived CM contained high levels of TIM3, which is an important immune regulatory molecule. Consistently, TIM3 expression was up-regulated in THP-1 cells cultured with ATC cell-derived CM. Moreover, TIM3 blockade significantly reversed the polarization of THP-1 cells induced by ATC cell-secreted soluble factors. We validated the clinical significance of the TIM3 in human TC by analyzing public datasets and found that the expression of TIM3 and its ligand galectin 9 was significantly higher in human TC tissue samples than in normal thyroid tissues. Taken together, our findings identified a new mechanism by which TIM3 induces tumor-promoting M2-like macrophage polarization in TC. Furthermore, TIM3 interference might be a potential tool for treatment of patients with ATC.

9.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165707, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004621

RESUMO

Current understanding of key cellular pathways, which are activated by the interaction between T. cruzi and host immunity, is crucial for controlling T. cruzi infection and also for limiting the development of the immunopathological symptoms of Chagas´ disease. Here, we focus on recent advances in the knowledge of modulation of innate receptors such as TLRs and NLRs, especially NLRP3, by T. cruzi in different cells of the immune system. On the other hand, the modulation of macrophage activation may be instrumental in allowing parasite persistence and long-term host survival. In this sense, we discuss the importance of the metabolism of two amino acids: L-arginine and tryptophan, and evaluate the role of iNOS, arginase and IDO enzymes in the regulation of innate and adaptive immune response during this infection; and, finally, we also discuss how T. cruzi exploits the AhR, mTOR and Wnt signaling pathways to promote their intracellular replication in macrophages, thus evading the host's immune response.


Assuntos
Doença de Chagas/imunologia , Interações Hospedeiro-Parasita/imunologia , Transdução de Sinais/imunologia , Trypanosoma cruzi/imunologia , Imunidade Adaptativa , Animais , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Arginina/imunologia , Arginina/metabolismo , Caspase 1/metabolismo , Doença de Chagas/parasitologia , Modelos Animais de Doenças , Vetores de Doenças , Humanos , Imunidade Inata , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores Toll-Like/metabolismo , Triatoma/imunologia , Triatoma/parasitologia , Trypanosoma cruzi/metabolismo , Triptofano/imunologia , Triptofano/metabolismo
10.
Front Immunol ; 10: 2665, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824482

RESUMO

Foxp3+ Regulatory T cells (Tregs) are pivotal for the maintenance of tolerance. Alterations in their number and/or function have been proposed to occur in the autoimmune-prone non-obese diabetic (NOD) mouse. Comparing the frequencies and absolute numbers of CD4+Foxp3+CD25+ Tregs among 4 to 6-week old NOD, B6, and BALB/c mice, we observed differences in counts and Foxp3 expression in Tregs from secondary lymphoid organs, but not in the thymus. Upon TCR and IL-2 stimulation, NOD Tregs showed lower responses than Tregs from B6 and BALB/c mice. Indeed, NOD Tregs responded with less proliferation and with smaller increments in the expression of CD25, LAP-1, CD39, PD-1, PD-L1, and LAG-3, when in vitro cultured for 3 days with anti-CD3/CD28 in the absence or presence of IL-2, Tregs from NOD mice showed to be highly dependent on IL-2 to maintain Foxp3 expression. Moreover, NOD Tregs become producers of IL-17 and INF-gamma more easily than Tregs from the other strains. In addition, NOD Tregs showed lower responsiveness to IL-2, with significantly reduced levels of pSTAT5, even at high IL-2 doses, with respect to B6 and BALB/c Tregs. Interestingly, NOD Tregs exhibit differences in the expression of SOCS3, GRAIL, and OTUB1 when compared with Tregs from B6 and BALB/c mice. Both, at steady state conditions and also after activation, Tregs from NOD mice showed increased levels of OTUB1 and low levels of GRAIL. In addition, NOD Tregs had differences in the expression of ubiquitin related molecules that play a role in the maintenance of Foxp3 cellular pools. Indeed, significantly higher STUB1/USP7 ratios were detected in NOD Tregs, both at basal conditions and after stimulation, compared to in B6 and BALB/c Tregs. Moreover, the addition of a proteasome inhibitor to cell cultures, conferred NOD Tregs the ability to retain Foxp3 expression. Herein, we provide evidence indicating a differential expression of SOCS3, GRAIL, and STUB1/USP7 in Tregs from NOD mice, factors known to be involved in IL-2R signaling and to affect Foxp3 stability. These findings add to the current knowledge of the immunobiology of Tregs and may be related to the known insufficiency of Tregs from NOD mice to maintain self-tolerance.


Assuntos
Anergia Clonal/imunologia , Ativação Linfocitária/fisiologia , Tolerância a Antígenos Próprios/imunologia , Linfócitos T Reguladores/imunologia , Animais , Feminino , Interleucina-2/imunologia , Camundongos , Camundongos Endogâmicos NOD , Linfócitos T Reguladores/metabolismo , Ubiquitinação
11.
12.
J Food Sci ; 84(12): 3352-3363, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31782531

RESUMO

Parastrephia lucida (Compositae), Tessaria absinthioides (Compositae), and Ephedra multiflora (Ephedraceae), three plant species from the Argentinean Puna (3600 m.a.s.l.) were selected for their anti-inflammatory and antioxidant properties to prepare mixtures to evaluate their use as nutraceuticals. Seven binary and ternary herbal mixtures made of ethanol 20% extracts of the selected plant species were prepared (Mixtures A to G), and they were analyzed for their effect on proinflammatory enzymes and their antioxidant activity in two cellular systems and in cell free systems. Toxicity tests were also carried out, and they were analyzed by high-performance liquid chromatography with a diode-array detector (HPLC-DAD) to quantify chemical markers. Mix A (equal parts of the three selected plant species) showed an important inhibitory capacity of different proinflammatory enzymes. Its potency on COX-2 was also higher than that of ibuprofen. Mix A and Mix G (P. lucida and T. absinthioides 1:1) showed a high antioxidant capacity in cellular and in cell-free systems. Toxicity assays further demonstrated their safety. This work shows the potential use of herbal mixtures made of medicinal plant species from the Argentinean Puna as nutraceutical or dietary supplements with antioxidant and anti-inflammatory activities. PRACTICAL APPLICATION: P. lucida, T. absinthioides, and E. multiflora are three plant species that are commonly used by Argentinean Puna inhabitants with medicinal purposes. Their proven safety, their antioxidant activity as well as their capacity to inhibit different proinflammatory enzymes make them attractive candidates to be used in combination as part of a dietary supplement aimed to prevent or palliate gastrointestinal and systemic inflammatory diseases. The use of native plant species as an alternative to more common and commercial plant species would have a positive impact on local communities' economies.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Asteraceae/química , Ephedra/química , Extratos Vegetais/farmacologia , Anti-Inflamatórios/análise , Antioxidantes/análise , Argentina , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Suplementos Nutricionais/análise , Humanos , Extratos Vegetais/análise , Plantas Medicinais/química
13.
Sci Rep ; 9(1): 8028, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142771

RESUMO

Thyroid cancer is the most common endocrine malignancy. Anaplastic thyroid cancer is one of the most aggressive thyroid tumors. It is known that activation of oncogenes and/or inactivation of tumor suppressor genes in tumor cells promotes tumorigenesis. The microenvironment of the tumor also plays a key role on cancer development and progression in a variety of tumors. However, the mechanisms by which tumor-stroma crosstalk in thyroid cancer remains poorly characterized. In this study we aimed to understand how interactions between fibroblasts and anaplastic thyroid cancer cells contribute to thyroid carcinogenesis. We first characterized the phenotypic changes of human fibroblasts in vitro through co-cultures by using transwells as well as by using anaplastic thyroid cancer cells-derived conditioned media. We found that fibroblasts acquired an activated phenotype or also known as cancer-associated fibroblast phenotype after being in contact with soluble factors secreted from anaplastic thyroid cancer cells, compared to the fibroblasts in mono-cultures. All the changes were partly mediated through Src/Akt activation. Treatment with the antioxidant N-acetyl-cysteine reversed in part the metabolic phenotype of activated fibroblasts. Remarkably, conditioned media obtained from these activated fibroblasts promoted cell proliferation and invasion of follicular thyroid cancer cell line, FTC-133 cells. Thus, a reciprocal and dynamic interaction exists between tumor and stromal cells, which results in the promotion of thyroid tumorigenesis. The present studies have advanced the understanding of the molecular basis of tumor-stroma communications, enabling identification and targeting of tumor-supportive mechanisms for novel treatment modalities.


Assuntos
Adenocarcinoma Folicular/patologia , Fibroblastos Associados a Câncer/metabolismo , Células Estromais/patologia , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Carcinogênese/patologia , Comunicação Celular , Técnicas de Cultura de Células , Desdiferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Técnicas de Cocultura , Meios de Cultivo Condicionados/metabolismo , Progressão da Doença , Humanos , Invasividade Neoplásica/patologia , Comunicação Parácrina , Glândula Tireoide/citologia , Glândula Tireoide/patologia , Microambiente Tumoral
14.
Front Immunol ; 9: 859, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29743880

RESUMO

During the acute phase of Trypanosoma cruzi infection, macrophages can act as host cells for the parasites as well as effector cells in the early anti-parasitic immune response. Thus, the targeting of specific signaling pathways could modulate macrophages response to restrict parasite replication and instruct an appropriate adaptive response. Recently, it has become evident that Wnt signaling has immunomodulatory functions during inflammation and infection. Here, we tested the hypothesis that during T. cruzi infection, the activation of Wnt signaling pathway in macrophages plays a role in modulating the inflammatory/tolerogenic response and therefore regulating the control of parasite replication. In this report, we show that early after T. cruzi infection of bone marrow-derived macrophages (BMM), ß-catenin was activated and Wnt3a, Wnt5a, and some Frizzled receptors as well as Wnt/ß-catenin pathway's target genes were upregulated, with Wnt proteins signaling sustaining the activation of Wnt/ß-catenin pathway and then activating the Wnt/Ca+2 pathway. Wnt signaling pathway activation was critical to sustain the parasite's replication in BMM; since the treatments with specific inhibitors of ß-catenin transcriptional activation or Wnt proteins secretion limited the parasite replication. Mechanistically, inhibition of Wnt signaling pathway armed BMM to fight against T. cruzi by inducing the production of pro-inflammatory cytokines and indoleamine 2,3-dioxygenase activity and by downregulating arginase activity. Likewise, in vivo pharmacological inhibition of the Wnts' interaction with its receptors controlled the parasite replication and improved the survival of lethally infected mice. It is well established that T. cruzi infection activates a plethora of signaling pathways that ultimately regulate immune mediators to determine the modulation of a defined set of effector functions in macrophages. In this study, we have revealed a new signaling pathway that is activated by the interaction between protozoan parasites and host innate immunity, establishing a new conceptual framework for the development of new therapies.


Assuntos
Doença de Chagas/imunologia , Interações Hospedeiro-Parasita/imunologia , Macrófagos/imunologia , Trypanosoma cruzi/imunologia , Via de Sinalização Wnt/imunologia , Animais , Linhagem Celular , Doença de Chagas/tratamento farmacológico , Doença de Chagas/mortalidade , Doença de Chagas/parasitologia , Modelos Animais de Doenças , Humanos , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Via de Sinalização Wnt/efeitos dos fármacos
15.
Front Immunol ; 9: 313, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515594

RESUMO

The causative agent of Chagas' disease, Trypanosoma cruzi, affects approximately 10 million people living mainly in Latin America, with macrophages being one of the first cellular actors confronting the invasion during T. cruzi infection and their function depending on their proper activation and polarization into distinct M1 and M2 subtypes. Macrophage polarization is thought to be regulated not only by cytokines and growth factors but also by environmental signals. The metabolic checkpoint kinase mammalian target of rapamycin (mTOR)-mediated sensing of environmental and metabolic cues influences macrophage polarization in a complex and as of yet incompletely understood manner. Here, we studied the role of the mTOR pathway in macrophages during T. cruzi infection. We demonstrated that the parasite activated mTOR, which was beneficial for its replication since inhibition of mTOR in macrophages by different inhibitors decreased parasite replication. Moreover, in rapamycin pretreated and infected macrophages, we observed a decreased arginase activity and expression, reduced IL-10 and increased interleukin-12 production, compared to control infected macrophages treated with DMSO. Surprisingly, we also found a reduced iNOS activity and expression in these macrophages. Therefore, we investigated possible alternative mechanisms involved in controlling parasite replication in rapamycin pretreated and infected macrophages. Although, cytoplasmic ROS and the enzyme indoleamine 2, 3-dioxygenase (IDO) were not involved, we observed a significant increase in IL-6, TNF-α, and IL-1ß production. Taking into account that IL-1ß is produced by activation of the cytoplasmic receptor NLRP3, which is one of the main components of the inflammasome, we evaluated NLRP3 expression during mTOR inhibition and T. cruzi infection. We observed that rapamycin-pretreated and infected macrophages showed a significant increase in NLRP3 expression and produced higher levels of mitochondrial ROS (mtROS) compared with control cells. Moreover, inhibition of mtROS production partially reversed the effect of rapamycin on parasite replication, with there being a significant increase in parasite load in rapamycin pretreated and infected macrophages from NLRP3 KO mice compared to wild-type control cells. Our findings strongly suggest that mTOR inhibition during T. cruzi infection induces NLRP3 inflammasome activation and mtROS production, resulting in an inflammatory-like macrophage profile that controls T. cruzi replication.


Assuntos
Doença de Chagas/imunologia , Inflamassomos/imunologia , Macrófagos/imunologia , Espécies Reativas de Oxigênio/imunologia , Serina-Treonina Quinases TOR/imunologia , Trypanosoma cruzi/imunologia , Animais , Doença de Chagas/genética , Doença de Chagas/patologia , Citocinas/genética , Citocinas/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Inflamassomos/genética , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética
16.
PLoS Negl Trop Dis ; 11(1): e0005307, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28114324

RESUMO

BACKGROUND: Trypanosoma cruzi infection is associated with severe T cell unresponsiveness to antigens and mitogens and is characterized by decreased IL-2 synthesis. In addition, the acquisition of the anergic phenotype is correlated with upregulation of "gene related to anergy in lymphocytes" (GRAIL) protein in CD4 T cells. We therefore sought to examine the role of GRAIL in CD4 T cell proliferation during T. cruzi infection. METHODOLOGY/PRINCIPAL FINDINGS: Balb/c mice were infected intraperitoneally with 500 blood-derived trypomastigotes of Tulahuen strain, and spleen cells from control non-infected or infected animals were obtained. CD4 T cell proliferation was assessed by CFSE staining, and the expression of GRAIL in splenic T cells was measured by real-time PCR, flow cytometry and Western blot. We found increased GRAIL expression at the early stages of infection, coinciding with the peak of parasitemia, with these findings correlating with impaired proliferation and poor IL-2 and IFN-γ secretion in response to plate-bound antibodies. In addition, we showed that the expression of GRAIL E3-ubiquitin ligase in CD4 T cells during the acute phase of infection was complemented by a high expression of inhibitory receptors such as PD-1 and CTLA-4. We demonstrated that GRAIL expression during infection was modulated by the mammalian target of the rapamycin (mTOR) pathway, since addition of IL-2 or CTLA-4 blockade in splenocytes from mice 21 days post infection led to a reduction in GRAIL expression. Furthermore, addition of IL-2 was able to activate the mTOR pathway, inducing Otubain-1 expression, which mediated GRAIL degradation and improved T cell proliferation. CONCLUSIONS: We hypothesize that GRAIL expression induced by the parasite may be maintained by the increased expression of inhibitory molecules, which blocked mTOR activation and IL-2 secretion. Consequently, the GRAIL regulator Otubain-1 was not expressed and GRAIL maintained the brake on T cell proliferation. Our findings reveal a novel association between increased GRAIL expression and impaired CD4 T cell proliferation during Trypanosoma cruzi infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Doença de Chagas/imunologia , Cisteína Endopeptidases/genética , Trypanosoma cruzi/fisiologia , Ubiquitina-Proteína Ligases/genética , Animais , Proliferação de Células , Doença de Chagas/genética , Doença de Chagas/parasitologia , Doença de Chagas/fisiopatologia , Cisteína Endopeptidases/imunologia , Feminino , Humanos , Interleucina-2/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Trypanosoma cruzi/genética , Ubiquitina-Proteína Ligases/imunologia
17.
Oncotarget ; 7(47): 77721-77731, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27783986

RESUMO

Macrophage plasticity is critical for controlling inflammation including those produced by helminth infections, where alternatively activated macrophages (AAM) are accumulated in tissues. AAM expressing the co-inhibitory molecule programmed death ligand 2 (PD-L2), which is capable of binding programmed death 1 (PD-1) expressed on activated T cells, have been demonstrated in different parasitic infections. However, the role of PD-L2 during F. hepatica infection has not yet been explored. We observed that F. hepatica infection or a F. hepatica total extract (TE) injection increased the expression of PD-L2 on peritoneal macrophages. In addition, the absence of PD-L2 expression correlated with an increase in susceptibility to F. hepatica infection, as evidenced by the shorter survival and increased liver damage observed in PD-L2 deficient (KO) mice. We assessed the contribution of the PD-L2 pathway to Th2 polarization during this infection, and found that the absence of PD-L2 caused a diminished Th2 type cytokine production by TE stimulated splenocytes from PD-L2 KO infected compared with WT mice. Besides, splenocytes and intrahepatic leukocytes from infected PD-L2 KO mice showed higher levels of IFN-γ than those from WT mice. Arginase expression and activity and IL-10 production were reduced in macrophages from PD-L2 KO mice compared to those from WT mice, revealing a strong correlation between PD-L2 expression and AAM polarization. Taken together, our data indicate that PD-L2 expression in macrophages is critical for AAM induction and the maintenance of an optimal balance between the Th1- and Th2-type immune responses to assure host survival during F. hepatica infection.


Assuntos
Fasciola hepatica/patogenicidade , Fasciolíase/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/genética , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Células Th1/imunologia , Animais , Arginase/metabolismo , Plasticidade Celular , Células Cultivadas , Fasciola hepatica/imunologia , Fasciolíase/genética , Fasciolíase/metabolismo , Técnicas de Inativação de Genes , Humanos , Interferon gama/metabolismo , Interleucina-10/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/parasitologia , Camundongos
18.
Int J Biol Sci ; 7(9): 1257-72, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22110379

RESUMO

The macrophage mannose receptor (MR) is a pattern recognition receptor of the innate immune system that binds to microbial structures bearing mannose, fucose and N-acetylglucosamine on their surface. Trypanosoma cruzi antigen cruzipain (Cz) is found in the different developmental forms of the parasite. This glycoprotein has a highly mannosylated C-terminal domain that participates in the host-antigen contact. Our group previously demonstrated that Cz-macrophage (Mo) interaction could modulate the immune response against T. cruzi through the induction of a preferential metabolic pathway. In this work, we have studied in Mo the role of MR in arginase induction and in T. cruzi survival using different MR ligands. We have showed that pre-incubation of T. cruzi infected cells with mannose-Bovine Serum Albumin (Man-BSA, MR specific ligand) biased nitric oxide (NO)/urea balance towards urea production and increased intracellular amastigotes growth. The study of intracellular signals showed that pre-incubation with Man-BSA in T. cruzi J774 infected cells induced down-regulation of JNK and p44/p42 phosphorylation and increased of p38 MAPK phosphorylation. These results are coincident with previous data showing that Cz also modifies the MAPK phosphorylation profile induced by the parasite. In addition, we have showed by confocal microscopy that Cz and Man-BSA enhance MR recycling. Furthermore, we studied MR behavior during T. cruzi infection in vivo. MR was up-regulated in F4/80+ cells from T. cruzi infected mice at 13 and 15 days post infection. Besides, we investigated the effect of MR blocking antibody in T. cruzi infected peritoneal Mo. Arginase activity and parasite growth were decreased in infected cells pre-incubated with anti-MR antibody as compared with infected cells treated with control antibody. Therefore, we postulate that during T. cruzi infection, Cz may contact with MR, increasing MR recycling which leads to arginase activity up-regulation and intracellular parasite growth.


Assuntos
Arginase/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/metabolismo , Macrófagos/parasitologia , Lectinas de Ligação a Manose/metabolismo , Receptores de Superfície Celular/metabolismo , Trypanosoma cruzi/patogenicidade , Animais , Western Blotting , Linhagem Celular , Técnica Indireta de Fluorescência para Anticorpo , Receptor de Manose , Camundongos , Microscopia Confocal , Tripanossomicidas
19.
J Biol Chem ; 286(43): 37147-57, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21896478

RESUMO

B-cell CLL/lymphoma 10 (BCL10) is crucial for the activation of NF-κB in numerous immune receptor signaling pathways, including the T-cell receptor (TCR) and B-cell receptor signaling pathways. However, the molecular mechanisms that lead to signal transduction from BCL10 to downstream NF-κB effector kinases, such as TAK1 and components of the IKK complex, are not entirely understood. Here we used a proteomic approach and identified the E3 ligase MIB2 as a novel component of the activated BCL10 complex. In vitro translation and pulldown assays suggest direct interaction between BCL10 and MIB2. Overexpression experiments show that MIB2 controls BCL10-mediated activation of NF-κB by promoting autoubiquitination and ubiquitination of IKKγ/NEMO, as well as recruitment and activation of TAK1. Knockdown of MIB2 inhibited BCL10-dependent NF-κB activation. Together, our results identify MIB2 as a novel component of the activated BCL10 signaling complex and a missing link in the BCL10-dependent NF-κB signaling pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína 10 de Linfoma CCL de Células B , Células HEK293 , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Jurkat , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos , NF-kappa B/genética , Proteômica , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/fisiologia
20.
Immunology ; 133(1): 29-40, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21303364

RESUMO

The programmed death ligands 1 (PD-L1) and 2 (PD-L2) that bind to programmed death 1 (PD-1) have been involved in peripheral tolerance and in the immune escape mechanisms during chronic viral infections and cancer. However, there are no reports about the role of these molecules during Trypanosoma cruzi infection. We have studied the role of PD-L1 and PD-L2 in T. cruzi infection and their importance in arginase/inducible nitric oxide synthase (iNOS) balance in the immunomodulatory properties of macrophages (Mφ). In this work, we have demonstrated that expression of the PD-1/PD-L pathway is modified during T. cruzi infection on Mφs obtained from peritoneal cavity. The Mφs from T. cruzi-infected mice suppressed T-cell proliferation and this was restored when anti-PD-1 and anti-PD-L1 antibodies were added. Nevertheless, anti-PD-L2 antibody treatment did not re-establish T-cell proliferation. PD-L2 blockade on peritoneal cells from infected mice showed an increase in arginase expression and activity and a decrease in iNOS expression and in nitric oxide (NO) production. Additionally, interleukin-10 production increased whereas interferon-γ production was reduced. As a result, this microenvironment enhanced parasite proliferation. In contrast, PD-1 and PD-L1 blockage increased iNOS expression and NO production on peritoneal Mφs from T. cruzi-infected mice. Besides, PD-L2 knockout infected mice showed an increased in parasitaemia as well as in arginase activity, and a reduction in NO production. Taken together, our results demonstrate that PD-L2 is involved in the arginase/iNOS balance during T. cruzi infection having a protective role in the immune response against the parasite.


Assuntos
Arginase/biossíntese , Antígeno B7-1/metabolismo , Doença de Chagas/metabolismo , Macrófagos/metabolismo , Trypanosoma cruzi/imunologia , Animais , Arginase/imunologia , Antígeno B7-1/imunologia , Western Blotting , Separação Celular , Doença de Chagas/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA