Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Pharmacokinet ; 62(12): 1661-1672, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824025

RESUMO

Small-interfering ribonucleic acids (siRNAs) with N-acetylgalactosamine (GalNAc) conjugation for improved liver uptake represent an emerging class of drugs that modulate liver-expressed therapeutic targets. The pharmacokinetics of GalNAc-siRNAs are characterized by a rapid distribution from plasma to tissue (hours) and a long terminal plasma half-life, analyzed in the form of the antisense strand, driven by redistribution from tissue (weeks). Understanding how clinical pharmacokinetics relate to the dose and type of siRNA chemical stabilizing method used is critical, e.g., to design studies, to investigate safety windows, and to predict the pharmacokinetics of new preclinical assets. To this end, we collected and analyzed pharmacokinetic data from the literature regarding nine GalNAc-siRNAs. Based on this analysis, we showed that the clinical plasma pharmacokinetics of GalNAc-siRNAs are approximately dose proportional and similar between chemical stabilizing methods. This holds for both the area under the concentration-time curve (AUC) and the maximum plasma concentration (Cmax). Corresponding rat and monkey pharmacokinetic data for a subset of the nine GalNAc-siRNAs show dose-proportional Cmax, supra-dose-proportional AUC, and similar pharmacokinetics between chemical stabilizing methods​. Together, the animal and human pharmacokinetic data indicate that plasma clearance divided by bioavailability follows allometric principles and scales between species with an exponent of 0.75. Finally, the clinical plasma concentration-time profiles can be empirically described by standard one-compartment kinetics with first-order absorption up to 24 h after subcutaneous dosing, and by three-compartment kinetics with first-order absorption in general. To describe the system more mechanistically, we report a corrected and unambiguously defined version of a previously published physiologically based pharmacokinetic model.


Assuntos
Acetilgalactosamina , Fígado , Humanos , Ratos , Animais , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Fígado/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Disponibilidade Biológica
2.
PLoS Comput Biol ; 19(1): e1010818, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36607908

RESUMO

Neurons regulate the activity of blood vessels through the neurovascular coupling (NVC). A detailed understanding of the NVC is critical for understanding data from functional imaging techniques of the brain. Many aspects of the NVC have been studied both experimentally and using mathematical models; various combinations of blood volume and flow, local field potential (LFP), hemoglobin level, blood oxygenation level-dependent response (BOLD), and optogenetics have been measured and modeled in rodents, primates, or humans. However, these data have not been brought together into a unified quantitative model. We now present a mathematical model that describes all such data types and that preserves mechanistic behaviors between experiments. For instance, from modeling of optogenetics and microscopy data in mice, we learn cell-specific contributions; the first rapid dilation in the vascular response is caused by NO-interneurons, the main part of the dilation during longer stimuli is caused by pyramidal neurons, and the post-peak undershoot is caused by NPY-interneurons. These insights are translated and preserved in all subsequent analyses, together with other insights regarding hemoglobin dynamics and the LFP/BOLD-interplay, obtained from other experiments on rodents and primates. The model can predict independent validation-data not used for training. By bringing together data with complementary information from different species, we both understand each dataset better, and have a basis for a new type of integrative analysis of human data.


Assuntos
Acoplamento Neurovascular , Humanos , Camundongos , Animais , Acoplamento Neurovascular/fisiologia , Neurônios/fisiologia , Encéfalo/fisiologia , Células Piramidais , Hemoglobinas , Circulação Cerebrovascular/fisiologia , Imageamento por Ressonância Magnética/métodos
3.
PLoS Comput Biol ; 18(12): e1010798, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36548394

RESUMO

The neurovascular and neurometabolic couplings (NVC and NMC) connect cerebral activity, blood flow, and metabolism. This interconnection is used in for instance functional imaging, which analyses the blood-oxygen-dependent (BOLD) signal. The mechanisms underlying the NVC are complex, which warrants a model-based analysis of data. We have previously developed a mechanistically detailed model for the NVC, and others have proposed detailed models for cerebral metabolism. However, existing metabolic models are still not fully utilizing available magnetic resonance spectroscopy (MRS) data and are not connected to detailed models for NVC. Therefore, we herein present a new model that integrates mechanistic modelling of both MRS and BOLD data. The metabolic model covers central metabolism, using a minimal set of interactions, and can describe time-series data for glucose, lactate, aspartate, and glutamate, measured after visual stimuli. Statistical tests confirm that the model can describe both estimation data and predict independent validation data, not used for model training. The interconnected NVC model can simultaneously describe BOLD data and can be used to predict expected metabolic responses in experiments where metabolism has not been measured. This model is a step towards a useful and mechanistically detailed model for cerebral blood flow and metabolism, with potential applications in both basic research and clinical applications.


Assuntos
Acoplamento Neurovascular , Humanos , Acoplamento Neurovascular/fisiologia , Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Circulação Cerebrovascular/fisiologia , Hemodinâmica/fisiologia
4.
Neuroimage ; 215: 116827, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32289456

RESUMO

The neurovascular coupling (NVC) connects neuronal activity to hemodynamic responses in the brain. This connection is the basis for the interpretation of functional magnetic resonance imaging data. Despite the central role of this coupling, we lack detailed knowledge about cell-specific contributions and our knowledge about NVC is mainly based on animal experiments performed during anesthesia. Anesthetics are known to affect neuronal excitability, but how this affects the vessel diameters is not known. Due to the high complexity of NVC data, mathematical modeling is needed for a meaningful analysis. However, neither the relevant neuronal subtypes nor the effects of anesthetics are covered by current models. Here, we present a mathematical model including GABAergic interneurons and pyramidal neurons, as well as the effect of an anesthetic agent. The model is consistent with data from optogenetic experiments from both awake and anesthetized animals, and it correctly predicts data from experiments with different pharmacological modulators. The analysis suggests that no downstream anesthetic effects are necessary if one of the GABAergic interneuron signaling pathways include a Michaelis-Menten expression. This is the first example of a quantitative model that includes both the cell-specific contributions and the effect of an anesthetic agent on the NVC.


Assuntos
Anestésicos/farmacologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Modelos Teóricos , Acoplamento Neurovascular/fisiologia , Células Piramidais/fisiologia , Animais , Neurônios GABAérgicos/efeitos dos fármacos , Interneurônios/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Acoplamento Neurovascular/efeitos dos fármacos , Estimulação Luminosa/métodos , Células Piramidais/efeitos dos fármacos
5.
PLoS Comput Biol ; 12(6): e1004971, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27310017

RESUMO

Functional magnetic resonance imaging (fMRI) measures brain activity by detecting the blood-oxygen-level dependent (BOLD) response to neural activity. The BOLD response depends on the neurovascular coupling, which connects cerebral blood flow, cerebral blood volume, and deoxyhemoglobin level to neuronal activity. The exact mechanisms behind this neurovascular coupling are not yet fully investigated. There are at least three different ways in which these mechanisms are being discussed. Firstly, mathematical models involving the so-called Balloon model describes the relation between oxygen metabolism, cerebral blood volume, and cerebral blood flow. However, the Balloon model does not describe cellular and biochemical mechanisms. Secondly, the metabolic feedback hypothesis, which is based on experimental findings on metabolism associated with brain activation, and thirdly, the neurotransmitter feed-forward hypothesis which describes intracellular pathways leading to vasoactive substance release. Both the metabolic feedback and the neurotransmitter feed-forward hypotheses have been extensively studied, but only experimentally. These two hypotheses have never been implemented as mathematical models. Here we investigate these two hypotheses by mechanistic mathematical modeling using a systems biology approach; these methods have been used in biological research for many years but never been applied to the BOLD response in fMRI. In the current work, model structures describing the metabolic feedback and the neurotransmitter feed-forward hypotheses were applied to measured BOLD responses in the visual cortex of 12 healthy volunteers. Evaluating each hypothesis separately shows that neither hypothesis alone can describe the data in a biologically plausible way. However, by adding metabolism to the neurotransmitter feed-forward model structure, we obtained a new model structure which is able to fit the estimation data and successfully predict new, independent validation data. These results open the door to a new type of fMRI analysis that more accurately reflects the true neuronal activity.


Assuntos
Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Acoplamento Neurovascular/fisiologia , Adulto , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Feminino , Hemoglobinas/metabolismo , Humanos , Masculino , Oxigênio/sangue , Oxigênio/metabolismo , Oxiemoglobinas/metabolismo , Processamento de Sinais Assistido por Computador , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA