Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 357: 120700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565029

RESUMO

To protect human health, wildlife and the aquatic environment, "safe uses" of pesticides are determined at the EU level while product authorization and terms of use are established at the national level. In Sweden, extra precaution is taken to protect drinking water, and permits are therefore required for pesticide use within abstraction zones. This paper presents MACRO-DB, a tool for assessing pesticide contamination risks of groundwater and surface water, used by authorities to support their decision-making for issuing such permits. MACRO-DB is a meta-model based on 583,200 simulations of the physically-based MACRO model used for assessing pesticide leaching risks at EU and national level. MACRO-DB is simple to use and runs on widely available input data. In a qualitative comparative assessment for two counties in Sweden, MACRO-DB outputs were in general agreement with groundwater monitoring data and matched or were more protective than the national risk assessment procedure for groundwater.


Assuntos
Água Potável , Água Subterrânea , Praguicidas , Poluentes Químicos da Água , Humanos , Praguicidas/análise , Suécia , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Medição de Risco/métodos , Internet
2.
Pest Manag Sci ; 63(9): 867-75, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17583910

RESUMO

A simulation tool for site-specific vulnerability assessments of pesticide leaching to groundwater was developed, based on the pesticide fate and transport model MACRO, parameterized using pedotransfer functions and reasonable worst-case parameter values. The effects of uncertainty in the pedotransfer functions on simulation results were examined for 48 combinations of soils, pesticides and application timings, by sampling pedotransfer function regression errors and propagating them through the simulation model in a Monte Carlo analysis. An uncertainty factor, f(u), was derived, defined as the ratio between the concentration simulated with no errors, c(sim), and the 80th percentile concentration for the scenario. The pedotransfer function errors caused a large variation in simulation results, with f(u) ranging from 1.14 to 1440, with a median of 2.8. A non-linear relationship was found between f(u) and c(sim), which can be used to account for parameter uncertainty by correcting the simulated concentration, c(sim), to an estimated 80th percentile value. For fine-textured soils, the predictions were most sensitive to errors in the pedotransfer functions for two parameters regulating macropore flow (the saturated matrix hydraulic conductivity, K(b), and the effective diffusion pathlength, d) and two water retention function parameters (van Genuchten's N and alpha parameters). For coarse-textured soils, the model was also sensitive to errors in the exponent in the degradation water response function and the dispersivity, in addition to K(b), but showed little sensitivity to d. To reduce uncertainty in model predictions, improved pedotransfer functions for K(b), d, N and alpha would therefore be most useful.


Assuntos
Praguicidas/química , Solo , Poluição Química da Água/estatística & dados numéricos , Simulação por Computador , Monitoramento Ambiental , Método de Monte Carlo , Medição de Risco , Incerteza
3.
J Contam Hydrol ; 93(1-4): 270-83, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17531347

RESUMO

Several simple index methods that use easily accessible data have been developed and included in decision-support systems to estimate pesticide leaching across larger areas. However, these methods often lack important process descriptions (e.g. macropore flow), which brings into question their reliability. Descriptions of macropore flow have been included in simulation models, but these are too complex and demanding for spatial applications. To resolve this dilemma, a neural network simulation meta-model of the dual-permeability macropore flow model MACRO was created for pesticide groundwater exposure assessment. The model was parameterized using pedotransfer functions that require as input the clay and sand content of the topsoil and subsoil, and the topsoil organic carbon content. The meta-model also requires the topsoil pesticide half-life and the soil organic carbon sorption coefficient as input. A fully connected feed-forward multilayer perceptron classification network with two hidden layers, linked to fully connected feed-forward multilayer perceptron neural networks with one hidden layer, trained on sub-sets of the target variable, was shown to be a suitable meta-model for the intended purpose. A Fourier amplitude sensitivity test showed that the model output (the 80th percentile average yearly pesticide concentration at 1 m depth for a 20 year simulation period) was sensitive to all input parameters. The two input parameters related to pesticide characteristics (i.e. soil organic carbon sorption coefficient and topsoil pesticide half-life) were the most influential, but texture in the topsoil was also quite important since it was assumed to control the mass exchange coefficient that regulates the strength of macropore flow. This is in contrast to models based on the advection-dispersion equation where soil texture is relatively unimportant. The use of the meta-model is exemplified with a case-study where the spatial variability of pesticide leaching is mapped for a small field. It was shown that the area of the field that contributes most to leaching depends on the properties of the compound in question. It is concluded that the simulation meta-model of MACRO should prove useful for mapping relative pesticide leaching risks at large scales.


Assuntos
Monitoramento Ambiental/métodos , Praguicidas/análise , Purificação da Água/métodos , Adsorção , Silicatos de Alumínio , Carbono/química , Argila , Simulação por Computador , Cinética , Modelos Estatísticos , Modelos Teóricos , Redes Neurais de Computação , Resíduos de Praguicidas/análise , Dióxido de Silício , Software , Poluentes Químicos da Água/análise
4.
Pest Manag Sci ; 63(4): 404-11, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17315270

RESUMO

This paper describes an updated version of a screening tool for groundwater vulnerability assessment to evaluate pesticide leaching to groundwater, based on a revised version of the attenuation factor. The tool has been implemented in a geographical information system (GIS) covering the major islands of the state of Hawaii, USA. The Hawaii Department of Agriculture currently uses the tool in their pesticide evaluation process as a first-tier screening tool. The basic soil properties and pesticide properties necessary to compute the index, and estimates of their uncertainty, are included in the GIS. Uncertainties in soil and pesticide properties are accounted for using first-order uncertainty analysis. Classifications of pesticides as 'likely', 'uncertain' or 'unlikely' to leach are made on the basis of the uncertainty and a comparison of the revised attenuation factor with values and uncertainties of two reference chemicals. The reference chemicals represent what are considered to be a 'leachable' and a 'non-leachable' pesticide under Hawaii conditions. It is concluded that the tool is suitable for screening new and already used pesticides for the islands of Hawaii. However, the tool is associated with uncertainties that are not accounted for, so a conservative approach with respect to interpretation of the results and selection of pesticide parameters used in the tool is recommended.


Assuntos
Praguicidas/análise , Poluentes Químicos da Água/análise , Poluição da Água/análise , Abastecimento de Água , Sistemas de Informação Geográfica , Havaí , Praguicidas/química , Praguicidas/classificação , Medição de Risco/métodos , Software , Solo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/classificação , Poluição da Água/prevenção & controle
5.
J Contam Hydrol ; 84(1-2): 81-105, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16448718

RESUMO

The objective of this study was to identify the main controls on atrazine leaching through luvisols and calcisols overlying fissured limestone using the dual-permeability model MACRO. The model parameterisation was based on a combination of direct measurements (e.g. hydraulic properties, adsorption and degradation), literature data and calibration against bromide leaching experiments in field plots. A Monte Carlo sensitivity analysis was carried out for a typical application pattern, considering two different depths of unsaturated limestone (15 and 30 m). MACRO calibrations to the field experiments demonstrated the occurrence of strong macropore flow in the luvisol, while transport in the calcisol could be described by the advection-dispersion equation. MACRO simulations of tritium and atrazine leaching qualitatively matched tritium concentration profiles measured in the limestone and atrazine concentrations measured in piezometers and in aquifer discharge via a spring. The sensitivity analysis suggested that the thickness of the limestone, as well as the transport properties and processes occurring in the unsaturated rock (e.g. matrix vs. fissure flow) will have little significant long-term effect on atrazine leaching, mainly because degradation is very slow in the limestone. No mineralization of atrazine was detected in one-year incubations and a mean half-life of 10 years was assumed in the simulations. Instead, processes occurring in the soil exerted the main control on predicted atrazine leaching, especially variations in the degradation rate and the strength of sorption and macropore flow. However, fissure flow in unsaturated rock is expected to exert a much more significant control on groundwater contamination for compounds that degrade more readily in the deep vadose zone.


Assuntos
Atrazina/química , Carbonato de Cálcio/química , Herbicidas/química , Monitoramento Ambiental , França , Fenômenos Geológicos , Geologia , Meia-Vida , Permeabilidade , Poluentes do Solo , Solubilidade , Poluentes da Água
6.
J Contam Hydrol ; 79(1-2): 89-106, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16061305

RESUMO

The one-dimensional pesticide fate model MACRO was loose-linked to the three-dimensional discrete fracture/matrix diffusion model FRAC3DVS to describe transport of the pesticide mecoprop in a fractured moraine till and local sand aquifer (5-5.5 m depth) overlying a regional limestone aquifer (16 m depth) at Havdrup, Denmark. Alternative approaches to describe the upper boundary in the groundwater model were examined. Field-scale simulations were run to compare a uniform upper boundary condition with a spatially variable upper boundary derived from Monte-Carlo simulations with MACRO. Plot-scale simulations were run to investigate the influence of the temporal resolution of the upper boundary conditions for fluxes in the groundwater model and the effects of different assumptions concerning the macropore/fracture connectivity between the two models. The influence of within-field variability of leaching on simulated mecoprop concentrations in the local aquifer was relatively small. A fully transient simulation with FRAC3DVS gave 20 times larger leaching to the regional aquifer compared to the case with steady-state water flow, assuming full connectivity with respect to macropores/fractures across the boundary between the two models. For fully transient simulations 'disconnecting' the macropores/fractures at the interface between the two models reduced leaching by a factor 24. A fully connected, transient simulation with FRAC3DVS, with spatially uniform upper boundary fluxes derived from a MACRO simulation with 'effective' parameters is therefore recommended for assessing leaching risks to the regional aquifer, at this, and similar sites.


Assuntos
Modelos Teóricos , Praguicidas/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Agricultura , Difusão , Fenômenos Geológicos , Geologia , Método de Monte Carlo , Medição de Risco , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA