RESUMO
We report on the absolute quantification of nanoparticle interactions with individual human B cells using quadrupole-based inductively coupled plasma mass spectrometry (ICP-MS). This method enables the quantification of nanoparticle-cell interactions at single nanoparticle and single cell levels. We demonstrate the efficient and accurate detection of individually suspended B cells and found an â¼100-fold higher association of colloidally stable positively charged nanoparticles with single B cells than neutrally charged nanoparticles. We confirmed that these nanoparticles were internalized by individual B cells and determined that the internalization occurred via energy-dependent pathways consistent with endocytosis. Using dual analyte ICP-MS, we determined that >80% of single B cells were positive for nanoparticles. Our study demonstrates an ICP-MS workflow for the absolute quantification of nanoparticle-cell interactions with single cell and single nanoparticle resolution. This unique workflow could inform the rational design of various nanomaterials for controlling cellular interactions, including immune cell-nanoparticle interactions.
Assuntos
Nanopartículas , Humanos , Espectrometria de Massas/métodos , Análise EspectralRESUMO
To control a nanoparticle's chemical composition and thus function, researchers require readily accessible and economical characterization methods that provide quantitative in situ analysis of individual nanoparticles with high throughput. Here, we established dual analyte single-particle inductively coupled plasma quadrupole mass spectrometry to quantify the chemical composition and reaction kinetics of individual colloidal nanoparticles. We determined the individual bimetallic nanoparticle mass and chemical composition changes during two different chemical reactions: (i) nanoparticle etching and (ii) element deposition on nanoparticles at a rate of 300+ nanoparticles/min. Our results revealed the heterogeneity of chemical reactions at the single nanoparticle level. This proof-of-concept study serves as a framework to quantitatively understand the dynamic changes of physicochemical properties that individual nanoparticles undergo during chemical reactions using a commonly available mass spectrometer. Such methods will broadly empower and inform the synthesis and development of safer, more effective, and more efficient nanotechnologies that use nanoparticles with defined functions.
Assuntos
Nanopartículas , Cinética , Espectrometria de Massas/métodos , Análise EspectralRESUMO
The increasing prevalence of products that incorporate engineered nanoparticles (ENPs) has prompted efforts to investigate the potential release, environmental fate, and exposure of the ENPs. However, the investigation of cerium dioxide nanoparticles (CeO2 NPs) in soil has remained limited, owing to the analytical challenge from the soil's complex nature. In this study, this challenge was overcome by applying a novel single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) methodology to detect CeO2 NPs extracted from soil, utilizing tetrasodium pyrophosphate (TSPP) aqueous solution as an extractant. This method is highly sensitive for determining CeO2 NPs in soil, with detection limits of size and concentration of 15 nm and 194 NPs mL-1, respectively. Extraction efficiency was sufficient in the tested TSPP concentration range from 1 mM to 10 mM at a soil-to-extractant ratio 1:100 (g mL-1) for the extraction of CeO2 NPs from the soil spiked with CeO2 NPs. The aging study demonstrated that particle size, size distribution, and particle concentration underwent no significant change in the aged soils for a short period of one month. This study showed an efficient method capable of extracting and accurately determining CeO2 NPs in soil matrices. The method can serve as a useful tool for nanoparticle analysis in routine soil tests and soil research.
Assuntos
Cério/química , Espectrometria de Massas/métodos , Nanopartículas/química , Poluentes do Solo/química , Tamanho da Partícula , Sensibilidade e Especificidade , Solo/químicaRESUMO
The most effective utilization of platinum (Pt) in fuel cells is achieved through the use of nanoparticles (NPs) that offer a large electrochemically active surface area. Because the stability of NPs decreases as they become smaller, their size and size distribution must be known in order to optimize the catalysts' durability, while offering high catalytic activity. Single particle inductively coupled plasma mass spectrometry (spICPMS) can quantify the mass of metallic NPs suspended in aqueous medium, which can then be converted into a size if the NPs' shape, density and composition are known. In this study, for the first time, spICPMS was compared to transmission electron microscopy (TEM) for the characterization of 10 nm Pt NPs. After verifying the accurate sizing of commercial Pt NPs with diameters of 30, 50 and 70 nm, spICPMS with solution calibration was applied to laboratory-synthesized 10 nm Pt NPs possessing a near spherical shape and 10 ± 2 nm diameter according to TEM. The same NPs were also analyzed by spICPMS with Pt size calibration using Pt NPs standards. Irrespectively of the calibration strategy, spICPMS measured the entire population of 659 Pt NPs (6-65 nm), while TEM analyzed the 500 Pt NPs that appeared isolated in the field of view (6-18 nm). Analysis of the size distribution histograms revealed that the modal and mean diameters were respectively 10 and 11 ± 2 nm using solution calibration, and 12 and 13 ± 2 nm using particle size calibration. Both of these mean diameters are in agreement with the TEM measurements according to a Student's t-test at the 95% confidence level, demonstrating that spICPMS, with a size detection limit of 6 nm, can accurately quantify 10-nm Pt NPs while at the same time analyzing the entire sample.
RESUMO
Single cell-inductively coupled plasma-mass spectrometry (SC-ICP-MS) is an emerging technology. In this work, we have developed a novel SC-ICP-MS method to quantify metal ions in individual cells of a toxic cyanobacterial species, Microcystis aeruginosa (M. aeruginosa), without complicated post-dosing sample preparation, and applied this method to study the treatment effectiveness of copper-based algaecides (cupric sulfate and EarthTec®) on the toxic algae M. aeruginosa. The developed SC-ICP-MS method uses new intrinsic metal element magnesium to determine real transport efficiency and cell concentration. The cell viability and microcystin-LR release by algaecide treatment were studied by flow cytometry and ultra-fast liquid chromatography-tandem mass spectrometry, respectively. The results showed that this novel method was very rapid, highly sensitive (detection limits of intracellular copper and magnesium were 65 ag/cell and 98 ag/cell, respectively), and reproducible (relative standard deviation within 12%). The algaecide effectiveness study further demonstrated that copper in the forms of cupric sulfate and copper-based algaecide EarthTec® successfully diminished M. aeruginosa populations. The higher the copper concentration used to treat the cells, the faster the speeds of copper uptake and cell lysis in the copper concentrations ranged from 0 to 200 µg/L of copper-based algaecide. The cells exhibit obvious heterogeneity in copper uptake. The result suggests that M. aeruginosa cells uptake and cumulate copper followed by cellular lysis and microcystin-LR release. These novel results indicated that though the copper-based algaecides could control this type of harmful algal bloom, further treatment to remove the released algal toxin from the treated water would be needed. Graphical abstract.
Assuntos
Cobre/química , Herbicidas/farmacologia , Microcystis/efeitos dos fármacos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Cobre/análise , Cobre/metabolismo , Citometria de Fluxo , Herbicidas/análise , Herbicidas/química , Limite de Detecção , Reprodutibilidade dos TestesRESUMO
In this study, aluminum sulfate, ferric sulfate, ferric chloride, and poly(diallyldimethylammonium chloride) (pDADMAC) coagulation removal of citrate-stabilized silver and gold nanoparticles (NPs) and uncoated titanium dioxide, cerium dioxide, and zinc oxide NPs was investigated using a single particle (SP) ICP-MS direct monitoring technique. Zone 2 (charge neutralization) coagulation was performed in river water and more commonly used Zone 4 (sweep floc) coagulation was performed in both river and lake water with environmentally relevant concentrations of selected NPs added. SP-ICP-MS was used to detect NP and dissolved species, characterize the size distribution, and quantify particle concentration as well as dissolved species before and after treatments. Other parameters including pH, dissolved organic carbon, turbidity, and UV254 absorbance were monitored to characterize treatment efficiency. Charge neutralization (Zone 2) coagulation resulted in 48-85% removal of citrate-stabilized NPs and 90-99% removal of uncoated NPs from river water. Sweep floc (Zone 4) coagulation in river water resulted in 36-94% removal of citrate-stabilized NPs and 91-99% removal of uncoated NPs both with and without polymer addition. Zone 4 coagulation conditions in lake water resulted in 77-98% removal of citrate-stabilized NPs and 59-96% removal of uncoated NPs without polymer. These results indicate that NP removal depends on NP surface and stability, the nature of the source water, and the coagulant type and approach.
Assuntos
Compostos de Alúmen/química , Cloretos/química , Compostos Férricos/química , Água Doce/química , Nanopartículas Metálicas/análise , Cério , Floculação , Ouro , Espectrometria de Massas , Nanopartículas Metálicas/química , Prata , Titânio , Poluentes Químicos da Água/análise , Óxido de ZincoRESUMO
The fate, behavior, and impact of engineered nanoparticles (NPs) in toxicological and environmental media are driven by complex processes which are difficult to quantify. A key limitation is the ability to perform measurements at low and environmentally relevant concentrations, since concentration may be a key factor determining fate and effects. Here, we use single particle inductively coupled mass spectroscopy (SP-ICP-MS) to measure directly NP diameter and particle number concentration of suspensions containing gold-silver core-shell (Au@Ag) NPs in EPA moderately hard water (MHW) and MHW containing 2.5 mg L-1 Suwannee River fulvic acid. The Au core of the Au@Ag NPs acts as an internal standard, and aids in the analysis of the complex Ag transformations. The high sensitivity of SP-ICP-MS, along with the Au@Ag NPs, enabled us to track the NP transformations in the range 0.01 and 50 µg L-1, without further sample preparation. On the basis of the analysis of both Au and Ag parameters (size, size distribution, and particle number), concentration was shown to be a key factor in NP behavior. At higher concentration, NPs were in an aggregation-dominated regime, while at the lower and environmentally representative concentrations, dissolution of Ag was dominant and aggregation was negligible. In addition, further formation of ionic silver as Ag NPs in the form of AgS or AgCl was shown to occur. Between 1 and 10 µg L-1, both aggregation and dissolution were important. The results suggest that, under realistic conditions, the role of NP homoaggregation may be minimal. In addition, the complexity of exposure and dose in dose-response relationships is highlighted.
Assuntos
Nanopartículas Metálicas/química , Prata/química , Ouro/química , Rios , SuspensõesRESUMO
It is challenging to separate and measure the physical and chemical properties of monometallic and bimetallic engineered nanoparticles (NPs), especially when mixtures are similar in size and at low concentration. We report that single particle inductively coupled mass spectroscopy (SP-ICP-MS), alongside field flow fractionation (FFF), has allowed for the accurate measurement of size and particle number concentrations of mixed metallic nanoparticles (NPs) containing monometallic NPs of gold (Au) and silver (Ag) and a bimetallic core-shell structured NP (Au@Ag) of equivalent size. Two sets of these NPs were measured. The first contained only 60nm particles, where the Au@Ag NP had a 30nm core and 15nm shell to make a total diameter of 60nm. The second contained only 80nm particles (Au@Ag NP core particle of 50nm with a 15nm shell). FFF separation was used here as a sizing technique rather than a separation technique. It was used to confirm that suspensions containing either individual or mixtures of the Au 60nm, Ag 60nm and AuAg 60nm suspensions eluted together and were of the same size. Similarly, FFF was used to show that suspensions containing individual or mixtures of the equivalent 80nm, eluted together and were of the same size. Although the 60nm and 80nm suspensions did not elute at the same time they were not run together. SP-ICP-MS is then used to identify the size and concentration of the particles within the suspension. Successful separation of the NPs was effected and the limits of the instrument were obtained.
Assuntos
Fracionamento por Campo e Fluxo/métodos , Ouro/química , Espectrometria de Massas/métodos , Nanopartículas Metálicas/química , Prata/química , Tamanho da Partícula , Reprodutibilidade dos TestesRESUMO
Cerium dioxide nanoparticles (CeO2NPs) are among the most broadly used engineered nanoparticles that will be increasingly released into the environment. Thus, understanding their uptake, transportation, and transformation in plants, especially food crops, is critical because it represents a potential pathway for human consumption. One of the primary challenges for the endeavor is the inadequacy of current analytical methodologies to characterize and quantify the nanomaterial in complex biological samples at environmentally relevant concentrations. Herein, a method was developed using single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) technology to simultaneously detect the size and size distribution of particulate Ce, particle concentration, and dissolved cerium in the shoots of four plant species including cucumber, tomato, soybean, and pumpkin. An enzymatic digestion method with Macerozyme R-10 enzyme previously used for gold nanoparticle extraction from the tomato plant was adapted successfully for CeO2NP extraction from all four plant species. This study is the first to report and demonstrate the presence of dissolved cerium in plant seedling shoots exposed to CeO2NPs hydroponically. The extent of plant uptake and accumulation appears to be dependent on the plant species, requiring further systematic investigation of the mechanisms.
Assuntos
Cério/farmacocinética , Nanopartículas/análise , Plantas/metabolismo , Espectrofotometria Atômica/métodos , Poluição Química da Água/análise , Cério/análise , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Nanoparticles (NPs) entering water systems are an emerging concern as NPs are more frequently manufactured and used. Single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) methods were validated to detect Zn- and Ce-containing NPs in surface and drinking water using a short dwell time of 0.1 ms or lower, ensuring precision in single particle detection while eliminating the need for sample preparation. Using this technique, information regarding NP size, size distribution, particle concentration, and dissolved ion concentrations was obtained simultaneously. The fates of Zn- and Ce-NPs, including those found in river water and added engineered NPs, were evaluated by simulating a typical drinking water treatment process. Lime softening, alum coagulation, powdered activated carbon sorption, and disinfection by free chlorine were simulated sequentially using river water. Lime softening removed 38-53 % of Zn-containing and ZnO NPs and >99 % of Ce-containing and CeO2 NPs. Zn-containing and ZnO NP removal increased to 61-74 % and 77-79 % after alum coagulation and disinfection, respectively. Source and drinking water samples were collected from three large drinking water treatment facilities and analyzed for Zn- and Ce-containing NPs. Each facility had these types of NPs present. In all cases, particle concentrations were reduced by a minimum of 60 % and most were reduced by >95 % from source water to finished drinking water. This study concludes that uncoated ZnO and CeO2 NPs may be effectively removed by conventional drinking water treatments including lime softening and alum coagulation.
Assuntos
Cério/análise , Água Potável/química , Nanopartículas Metálicas/análise , Espectrofotometria Atômica/métodos , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Óxido de Zinco/análise , Água Potável/análise , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
One of the most direct means for human exposure to nanoparticles (NPs) released into the environment is drinking water. Therefore, it is critical to understand the occurrence and fate of NPs in drinking water systems. The objectives of this study were to develop rapid and reliable analytical methods and apply them to investigate the fate and transportation of NPs during drinking water treatments. Rapid single particle ICP-MS (SP-ICP-MS) methods were developed to characterize and quantify titanium-containing, titanium dioxide, silver, and gold NP concentration, size, size distribution, and dissolved metal element concentration in surface water and treated drinking water. The effectiveness of conventional drinking water treatments (including lime softening, alum coagulation, filtration, and disinfection) to remove NPs from surface water was evaluated using six-gang stirrer jar test simulations. The selected NPs were nearly completely (97 ± 3%) removed after lime softening and alum coagulation/activated carbon adsorption treatments. Additionally, source and drinking waters from three large drinking water treatment facilities utilizing similar treatments with the simulation test were collected and analyzed by the SP-ICP-MS methods. Ti-containing particles and dissolved Ti were present in the river water samples, but Ag and Au were not present. Treatments used at each drinking water treatment facility effectively removed over 93% of the Ti-containing particles and dissolved Ti from the source water.
Assuntos
Ouro/análise , Nanopartículas Metálicas/análise , Prata/análise , Titânio/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Compostos de Alúmen/química , Compostos de Cálcio/química , Carbono/química , Desinfecção , Água Potável/análise , Filtração , Floculação , Espectrometria de Massas/métodos , Óxidos/química , Rios/química , Abrandamento da ÁguaRESUMO
Plant uptake and accumulation of nanoparticles (NPs) represent an important pathway for potential human expose to NPs. Consequently, it is imperative to understand the uptake of accumulation of NPs in plant tissues and their unique physical and chemical properties within plant tissues. Current technologies are limited in revealing the unique characteristics of NPs after they enter plant tissues. An enzymatic digestion method, followed by single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) analysis, was developed for simultaneous determination of gold NP (AuNP) size, size distribution, particle concentration, and dissolved Au concentration in tomato plant tissues. The experimental results showed that Macerozyme R-10 enzyme was capable of extracting AuNPs from tomato plants without causing dissolution or aggregation of AuNPs. The detection limit for quantification of AuNP size was 20 nm, and the AuNP particle concentration detection limit was 1000 NPs/mL. The particle concentration recoveries of spiked AuNPs were high (79-96%) in quality control samples. The developed SP-ICP-MS method was able to accurately measure AuNP size, size distribution, and particle concentration in the plant matrix. The dosing study indicated that tomato can uptake AuNPs as intact particles without alternating the AuNP properties.
Assuntos
Ouro/análise , Ouro/farmacocinética , Nanopartículas Metálicas/análise , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Ouro/química , Limite de Detecção , Espectrometria de Massas , Nanopartículas Metálicas/química , Tamanho da PartículaRESUMO
This article is one of a series of 4 that reports on a task of the NanoRelease Food Additive project of the International Life Science Institute Center for Risk Science Innovation and Application to identify, evaluate, and develop methods that are needed to confidently detect, characterize, and quantify intentionally produced engineered nanomaterials (ENMs) released from food along the alimentary tract. This particular article focuses on the problem of detecting ENMs in food, paying special attention to matrix interferences and how to deal with them. In this review, an in-depth analysis of the literature related to detection of ENMs in complex matrices is presented. The literature review includes discussions of sampling methods, such as centrifugation and ENM extraction. Available analytical methods, as well as emerging methods, are also presented. The article concludes with a summary of findings and an overview of potential knowledge gaps and targets for method development in this area.