Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2769, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553486

RESUMO

Multiple neurological disorders are associated with gastrointestinal (GI) symptoms, including autism spectrum disorder (ASD). However, it is unclear whether GI distress itself can modify aspects of behavior. Here, we show that mice that experience repeated colitis have impaired active social engagement, as measured by interactions with a foreign mouse, even though signs of colitis were no longer present. We then tested the hypothesis that individuals with ASD harbor a microbiota that might differentially influence GI health by performing microbiota transplantation studies into male germfree animals, followed by induction of colitis. Animals that harbor a microbiota from ASD individuals have worsened gut phenotypes when compared to animals colonized with microbiotas from familial neurotypical (NT) controls. We identify the enrichment of Blautia species in all familial NT controls and observe an association between elevated abundance of Bacteroides uniformis and reductions in intestinal injury. Oral treatment with either of these microbes reduces colon injury in mice. Finally, provision of a Blautia isolate from a NT control ameliorates gut injury-associated active social engagement in mice. Collectively, our data demonstrate that past intestinal distress is associated with changes in active social behavior in mice that can be ameliorated by supplementation of members of the human microbiota.


Assuntos
Transtorno do Espectro Autista , Colite , Gastroenteropatias , Microbiota , Humanos , Masculino , Camundongos , Animais , Transtorno do Espectro Autista/terapia , Participação Social , Colite/terapia , Suplementos Nutricionais
2.
J Biol Chem ; 299(7): 104877, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37269954

RESUMO

Abcb10 is a mitochondrial membrane protein involved in hemoglobinization of red cells. Abcb10 topology and ATPase domain localization suggest it exports a substrate, likely biliverdin, out of mitochondria that is necessary for hemoglobinization. In this study, we generated Abcb10 deletion cell lines in both mouse murine erythroleukemia and human erythroid precursor human myelogenous leukemia (K562) cells to better understand the consequences of Abcb10 loss. Loss of Abcb10 resulted in an inability to hemoglobinize upon differentiation in both K562 and mouse murine erythroleukemia cells with reduced heme and intermediate porphyrins and decreased levels of aminolevulinic acid synthase 2 activity. Metabolomic and transcriptional analyses revealed that Abcb10 loss gave rise to decreased cellular arginine levels, increased transcripts for cationic and neutral amino acid transporters with reduced levels of the citrulline to arginine converting enzymes argininosuccinate synthetase and argininosuccinate lyase. The reduced arginine levels in Abcb10-null cells gave rise to decreased proliferative capacity. Arginine supplementation improved both Abcb10-null proliferation and hemoglobinization upon differentiation. Abcb10-null cells showed increased phosphorylation of eukaryotic translation initiation factor 2 subunit alpha, increased expression of nutrient sensing transcription factor ATF4 and downstream targets DNA damage inducible transcript 3 (Chop), ChaC glutathione specific gamma-glutamylcyclotransferase 1 (Chac1), and arginyl-tRNA synthetase 1 (Rars). These results suggest that when the Abcb10 substrate is trapped in the mitochondria, the nutrient sensing machinery is turned on remodeling transcription to block protein synthesis necessary for proliferation and hemoglobin biosynthesis in erythroid models.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Animais , Humanos , Camundongos , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Arginina , Transportadores de Cassetes de Ligação de ATP/metabolismo , Hemoglobinas/metabolismo , Células K562 , Proteínas Mitocondriais/metabolismo
4.
Am J Cancer Res ; 12(10): 4789-4801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36381318

RESUMO

Associations of energy balance components, including physical activity and obesity, with colorectal cancer risk and mortality are well established. However, the gut microbiome has not been investigated as underlying mechanism. We investigated associations of physical activity, BMI, and combinations of physical activity/BMI with gut microbiome diversity and differential abundances among colorectal cancer patients. N=179 patients with colorectal cancer (stages I-IV) were included in the study. Pre-surgery stool samples were used to perform 16S rRNA gene sequencing (Illumina). Physical activity (MET hrs/wk) during the year before diagnosis was assessed by questionnaire and participants were classified as being active vs. inactive based on guidelines. BMI at baseline was abstracted from medical records. Patients were classified into four combinations of physical activity levels/BMI. Lower gut microbial diversity was observed among 'inactive' vs. 'active' patients (Shannon: P=0.01, Simpson: P=0.03), 'obese' vs. 'normal weight' patients (Shannon, Simpson, and Observed species: P=0.02, respectively), and 'overweight/obese/inactive' vs. 'normal weight/active' patients (Shannon: P=0.02, Observed species: P=0.04). Results differed by sex and tumor site. Two phyla and 12 genera (Actinobacteria and Fusobacteria, Adlercreutzia, Anaerococcus, Clostridium, Eubacterium, Mogibacteriaceae, Olsenella, Peptinophilus, Pyramidobacter, RFN20, Ruminococcus, Succinivibrio, Succiniclasticum) were differentially abundant across physical activity and BMI groups. This is the first evidence for associations of physical activity with gut microbiome diversity and abundances, directly among colorectal cancer patients. Our results indicate that physical activity may offset gut microbiome dysbiosis due to obesity. Alterations in gut microbiota may contribute mechanistically to the energy balance-colorectal cancer link and impact clinical outcomes.

5.
JCI Insight ; 7(19)2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214220

RESUMO

Intercellular communication is critical for homeostasis in mammalian systems, including the gastrointestinal (GI) tract. Exosomes are nanoscale lipid extracellular vesicles that mediate communication between many cell types. Notably, the roles of immune cell exosomes in regulating GI homeostasis and inflammation are largely uncharacterized. By generating mouse strains deficient in cell-specific exosome production, we demonstrate deletion of the small GTPase Rab27A in CD11c+ cells exacerbated murine colitis, which was reversible through administration of DC-derived exosomes. Profiling RNAs within colon exosomes revealed a distinct subset of miRNAs carried by colon- and DC-derived exosomes. Among antiinflammatory exosomal miRNAs, miR-146a was transferred from gut immune cells to myeloid and T cells through a Rab27-dependent mechanism, targeting Traf6, IRAK-1, and NLRP3 in macrophages. Further, we have identified a potentially novel mode of exosome-mediated DC and macrophage crosstalk that is capable of skewing gut macrophages toward an antiinflammatory phenotype. Assessing clinical samples, RAB27A, select miRNAs, and RNA-binding proteins that load exosomal miRNAs were dysregulated in ulcerative colitis patient samples, consistent with our preclinical mouse model findings. Together, our work reveals an exosome-mediated regulatory mechanism underlying gut inflammation and paves the way for potential use of miRNA-containing exosomes as a novel therapeutic for inflammatory bowel disease.


Assuntos
Antígenos CD11 , Colite , Exossomos , Inflamação , Células Mieloides , Animais , Antígenos CD11/genética , Antígenos CD11/imunologia , Colite/genética , Colite/imunologia , Exossomos/genética , Exossomos/imunologia , Inflamação/genética , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Intestinos/imunologia , Lipídeos , Mamíferos/genética , Mamíferos/imunologia , Camundongos , MicroRNAs/imunologia , Proteínas Monoméricas de Ligação ao GTP/imunologia , Células Mieloides/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Fator 6 Associado a Receptor de TNF/imunologia
6.
Symbiosis ; 87(1): 45-58, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-37915425

RESUMO

Fungi are often overlooked in microbiome research and, as a result, little is known about the mammalian mycobiome. Although frequently detected in vertebrate guts and known to contribute to digestion in some herbivores, whether these eukaryotes are a persistent part of the mammalian gut microbiome remains contentious. To address this question, we sampled fungi from wild woodrats (Neotoma spp.) collected from 25 populations across the southwestern United States. For each animal, we collected a fecal sample in the wild, and then re-sampled the same individual after a month in captivity on a controlled diet. We characterized and quantified fungi using three techniques: ITS metabarcoding, shotgun metagenomics and qPCR. Wild individuals contained diverse fungal assemblages dominated by plant pathogens, widespread molds, and coprophilous taxa primarily in Ascomycota and Mucoromycota. Fungal abundance, diversity and composition differed between individuals, and was primarily influenced by animal geographic origin. Fungal abundance and diversity significantly declined in captivity, indicating that most fungi in wild hosts came from diet and environmental exposure. While this suggests that these mammals lack a persistent gut mycobiome, natural fungal exposure may still impact fungal dispersal and animal health.

7.
Front Immunol ; 13: 1046574, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733389

RESUMO

Introduction: Neutrophil extracellular traps (NETs) clear pathogens but may contribute Q8 pathogenically to host inflammatory tissue damage during sepsis. Innovative therapeutic agents targeting NET formation and their potentially harmful collateral effects remain understudied. Methods: We investigated a novel therapeutic agent, neonatal NET-Inhibitory Factor (nNIF), in a mouse model of experimental sepsis - cecal ligation and puncture (CLP). We administered 2 doses of nNIF (1 mg/ kg) or its scrambled peptide control intravenously 4 and 10 hours after CLP treatment and assessed survival, peritoneal fluid and plasma NET formation using the MPO-DNA ELISA, aerobic bacterial colony forming units (CFU) using serial dilution and culture, peritoneal fluid and stool microbiomes using 16S rRNA gene sequencing, and inflammatory cytokine levels using a multiplexed cytokine array. Meropenem (25 mg/kg) treatment served as a clinically relevant treatment for infection. Results: We observed increased 6-day survival rates in nNIF (73%) and meropenem (80%) treated mice compared to controls (0%). nNIF decreased NET formation compared to controls, while meropenem did not impact NET formation. nNIF treatment led to increased peritoneal fluid and plasma bacterial CFUs consistent with loss of NET-mediated extracellular microbial killing, while nNIF treatment alone did not alter the peritoneal fluid and stool microbiomes compared to vehicle-treated CLP mice. nNIF treatment also decreased peritoneal TNF-a inflammatory cytokine levels compared to scrambled peptide control. Furthermore, adjunctive nNIF increased survival in a model of sub-optimal meropenem treatment (90% v 40%) in CLP-treated mice. Discussion: Thus, our data demonstrate that nNIF inhibits NET formation in a translationally relevant mouse model of sepsis, improves survival when given as monotherapy or as an adjuvant with antibiotics, and may play an important protective role in sepsis.


Assuntos
Armadilhas Extracelulares , Sepse , Camundongos , Animais , Neutrófilos/patologia , Meropeném/farmacologia , RNA Ribossômico 16S/genética , Sepse/patologia , Citocinas/farmacologia , Receptores Proteína Tirosina Quinases , Punções
8.
Cell Rep ; 37(5): 109916, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731608

RESUMO

Intestinal epithelial cells (IECs) have long been understood to express high levels of major histocompatibility complex class II (MHC class II) molecules but are not considered canonical antigen-presenting cells, and the impact of IEC-MHC class II signaling on gut homeostasis remains enigmatic. As IECs serve as the primary barrier between underlying host immune cells, we reasoned that IEC-intrinsic antigen presentation may play a role in responses toward the microbiota. Mice with an IEC-intrinsic deletion of MHC class II (IECΔMHC class II) are healthy but have fewer microbial-bound IgA, regulatory T cells (Tregs), and immune repertoire selection. This was associated with increased interindividual microbiota variation and altered proportions of two taxa in the ileum where MHC class II on IECs is highest. Intestinal mononuclear phagocytes (MNPs) have similar MHC class II transcription but less surface MHC class II and are capable of acquiring MHC class II from IECs. Thus, epithelial-myeloid interactions mediate development of adaptive responses to microbial antigens within the gastrointestinal tract.


Assuntos
Imunidade Adaptativa , Bactérias/imunologia , Células Epiteliais/imunologia , Microbioma Gastrointestinal , Antígenos de Histocompatibilidade Classe II/imunologia , Íleo/microbiologia , Imunidade nas Mucosas , Sistema Fagocitário Mononuclear/imunologia , Células Mieloides/imunologia , Animais , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Linhagem Celular , Colite/imunologia , Colite/metabolismo , Colite/microbiologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Antígenos de Histocompatibilidade Classe II/metabolismo , Interações Hospedeiro-Patógeno , Íleo/imunologia , Íleo/metabolismo , Imunoglobulina A/imunologia , Imunoglobulina A/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sistema Fagocitário Mononuclear/metabolismo , Sistema Fagocitário Mononuclear/microbiologia , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
9.
Nature ; 596(7870): 114-118, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34262174

RESUMO

Pathogenic fungi reside in the intestinal microbiota but rarely cause disease. Little is known about the interactions between fungi and the immune system that promote commensalism. Here we investigate the role of adaptive immunity in promoting mutual interactions between fungi and host. We find that potentially pathogenic Candida species induce and are targeted by intestinal immunoglobulin A (IgA) responses. Focused studies on Candida albicans reveal that the pathogenic hyphal morphotype, which is specialized for adhesion and invasion, is preferentially targeted and suppressed by intestinal IgA responses. IgA from mice and humans directly targets hyphal-enriched cell-surface adhesins. Although typically required for pathogenesis, C. albicans hyphae are less fit for gut colonization1,2 and we show that immune selection against hyphae improves the competitive fitness of C. albicans. C. albicans exacerbates intestinal colitis3 and we demonstrate that hyphae and an IgA-targeted adhesin exacerbate intestinal damage. Finally, using a clinically relevant vaccine to induce an adhesin-specific immune response protects mice from C. albicans-associated damage during colitis. Together, our findings show that adaptive immunity suppresses harmful fungal effectors, with benefits to both C. albicans and its host. Thus, IgA uniquely uncouples colonization from pathogenesis in commensal fungi to promote homeostasis.


Assuntos
Imunidade Adaptativa , Candida albicans/imunologia , Candida albicans/fisiologia , Interações Hospedeiro-Patógeno/imunologia , Simbiose/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antígenos de Fungos/imunologia , Candida albicans/patogenicidade , Colite/imunologia , Colite/microbiologia , Colite/patologia , Feminino , Vacinas Fúngicas/imunologia , Microbioma Gastrointestinal/imunologia , Humanos , Hifas/imunologia , Imunoglobulina A/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
10.
Clin Colorectal Cancer ; 20(3): e165-e172, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33935016

RESUMO

BACKGROUND: Fusobacterium nucleatum (Fn), a bacterium associated with a wide spectrum of infections, has emerged as a key microbe in colorectal carcinogenesis. However, the underlying mechanisms and clinical relevance of Fn in colorectal cancer (CRC) remain incompletely understood. PATIENTS AND METHODS: We examined associations between Fn abundance and clinicopathologic characteristics among 105 treatment-naïve CRC patients enrolled in the international, prospective ColoCare Study. Electronic medical charts, including pathological reports, were reviewed to document clinicopathologic features. Quantitative real-time polymerase chain reaction (PCR) was used to amplify/detect Fn DNA in preoperative fecal samples. Multinomial logistic regression was used to analyze associations between Fn abundance and patient sex, age, tumor stage, grade, site, microsatellite instability, body mass index (BMI), alcohol consumption, and smoking history. Cox proportional hazards models were used to investigate associations of Fn abundance with overall survival in adjusted models. RESULTS: Compared to patients with undetectable or low Fn abundance, patients with high Fn abundance (n = 22) were 3-fold more likely to be diagnosed with rectal versus colon cancer (odds ratio [OR] = 3.01; 95% confidence interval [CI], 1.06-8.57; P = .04) after adjustment for patient sex, age, BMI, and study site. Patients with high Fn abundance also had a 5-fold increased risk of being diagnosed with rectal cancer versus right-sided colon cancer (OR = 5.32; 95% CI, 1.23-22.98; P = .03). There was no statistically significant association between Fn abundance and overall survival. CONCLUSION: Our findings suggest that Fn abundance in fecal samples collected prior to surgery varies by tumor site among treatment-naïve CRC patients. Overall, fecal Fn abundance may have diagnostic and prognostic significance in the clinical management of CRC.


Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Humanos , Instabilidade de Microssatélites , Prognóstico , Estudos Prospectivos
11.
BMC Bioinformatics ; 21(1): 191, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32414321

RESUMO

BACKGROUND: Single cell RNA sequencing (scRNAseq) has provided invaluable insights into cellular heterogeneity and functional states in health and disease. During the analysis of scRNAseq data, annotating the biological identity of cell clusters is an important step before downstream analyses and it remains technically challenging. The current solutions for annotating single cell clusters generally lack a graphical user interface, can be computationally intensive or have a limited scope. On the other hand, manually annotating single cell clusters by examining the expression of marker genes can be subjective and labor-intensive. To improve the quality and efficiency of annotating cell clusters in scRNAseq data, we present a web-based R/Shiny app and R package, Cluster Identity PRedictor (CIPR), which provides a graphical user interface to quickly score gene expression profiles of unknown cell clusters against mouse or human references, or a custom dataset provided by the user. CIPR can be easily integrated into the current pipelines to facilitate scRNAseq data analysis. RESULTS: CIPR employs multiple approaches for calculating the identity score at the cluster level and can accept inputs generated by popular scRNAseq analysis software. CIPR provides 2 mouse and 5 human reference datasets, and its pipeline allows inter-species comparisons and the ability to upload a custom reference dataset for specialized studies. The option to filter out lowly variable genes and to exclude irrelevant reference cell subsets from the analysis can improve the discriminatory power of CIPR suggesting that it can be tailored to different experimental contexts. Benchmarking CIPR against existing functionally similar software revealed that our algorithm is less computationally demanding, it performs significantly faster and provides accurate predictions for multiple cell clusters in a scRNAseq experiment involving tumor-infiltrating immune cells. CONCLUSIONS: CIPR facilitates scRNAseq data analysis by annotating unknown cell clusters in an objective and efficient manner. Platform independence owing to Shiny framework and the requirement for a minimal programming experience allows this software to be used by researchers from different backgrounds. CIPR can accurately predict the identity of a variety of cell clusters and can be used in various experimental contexts across a broad spectrum of research areas.


Assuntos
Internet , Anotação de Sequência Molecular , Análise de Sequência de RNA , Análise de Célula Única , Software , Algoritmos , Animais , Sequência de Bases , Agregação Celular , Análise por Conglomerados , Bases de Dados Genéticas , Humanos , Camundongos
12.
Elife ; 82019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31309928

RESUMO

Symbiotic microbes impact the function and development of the central nervous system (CNS); however, little is known about the contribution of the microbiota during viral-induced neurologic damage. We identify that commensals aid in host defense following infection with a neurotropic virus through enhancing microglia function. Germfree mice or animals that receive antibiotics are unable to control viral replication within the brain leading to increased paralysis. Microglia derived from germfree or antibiotic-treated animals cannot stimulate viral-specific immunity and microglia depletion leads to worsened demyelination. Oral administration of toll-like receptor (TLR) ligands to virally infected germfree mice limits neurologic damage. Homeostatic activation of microglia is dependent on intrinsic signaling through TLR4, as disruption of TLR4 within microglia, but not the entire CNS (excluding microglia), leads to increased viral-induced clinical disease. This work demonstrates that gut immune-stimulatory products can influence microglia function to prevent CNS damage following viral infection.


Assuntos
Encefalite Viral/patologia , Encefalite Viral/prevenção & controle , Microbioma Gastrointestinal/imunologia , Microglia/imunologia , Transdução de Sinais , Simbiose , Receptores Toll-Like/metabolismo , Animais , Modelos Animais de Doenças , Vida Livre de Germes , Camundongos
13.
Science ; 365(6451)2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31346040

RESUMO

The microbiota influences obesity, yet organisms that protect from disease remain unknown. During studies interrogating host-microbiota interactions, we observed the development of age-associated metabolic syndrome (MetS). Expansion of Desulfovibrio and loss of Clostridia were key features associated with obesity in this model and are present in humans with MetS. T cell-dependent events were required to prevent disease, and replacement of Clostridia rescued obesity. Inappropriate immunoglobulin A targeting of Clostridia and increased Desulfovibrio antagonized the colonization of beneficial Clostridia. Transcriptional and metabolic analysis revealed enhanced lipid absorption in the obese host. Colonization of germ-free mice with Clostridia, but not Desulfovibrio, down-regulated genes that control lipid absorption and reduced adiposity. Thus, immune control of the microbiota maintains beneficial microbial populations that constrain lipid metabolism to prevent MetS.


Assuntos
Clostridium/imunologia , Desulfovibrio/imunologia , Microbiota/imunologia , Obesidade/imunologia , Obesidade/microbiologia , Linfócitos T Reguladores/imunologia , Animais , Antibiose , Interações entre Hospedeiro e Microrganismos , Absorção Intestinal , Metabolismo dos Lipídeos , Síndrome Metabólica/imunologia , Síndrome Metabólica/microbiologia , Camundongos , Camundongos Mutantes , Fator 88 de Diferenciação Mieloide/genética
14.
PLoS One ; 14(5): e0215946, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31095603

RESUMO

MHC molecules are essential for the adaptive immune response, and they are the most polymorphic genetic loci in vertebrates. Extreme genetic variation at these loci is paradoxical given their central importance to host health. Classic models of MHC gene evolution center on antagonistic host-pathogen interactions to promote gene diversification and allelic diversity in host populations. However, all multicellular organisms are persistently colonized by their microbiota that perform essential metabolic functions for their host and protect from infection. Here, we provide data to support the hypothesis that MHC heterozygote advantage (a main force of selection thought to drive MHC gene evolution), may operate by enhancing fitness advantages conferred by the host's microbiome. We utilized fecal 16S rRNA gene sequences and their predicted metagenome datasets collected from multiple MHC congenic homozygote and heterozygote mouse strains to describe the influence of MHC heterozygosity on microbiome form and function. We find that in contrast to homozygosity at MHC loci, MHC heterozygosity promotes functional diversification of the microbiome, enhances microbial network connectivity, and results in enrichment for a variety of microbial functions that are positively associated with host fitness. We demonstrate that taxonomic and functional diversity of the microbiome is positively correlated in MHC heterozygote but not homozygote animals, suggesting that heterozygote microbiomes are more functionally adaptive under similar environmental conditions than homozygote microbiomes. Our data complement previous observations on the role of MHC polymorphism in sculpting microbiota composition, but also provide functional insights into how MHC heterozygosity may enhance host health by modulating microbiome form and function. We also provide evidence to support that MHC heterozygosity limits functional redundancy among commensal microbes and may enhance the metabolic versatility of their microbiome. Results from our analyses yield multiple testable predictions regarding the role of MHC heterozygosity on the microbiome that will help guide future research in the area of MHC-microbiome interactions.


Assuntos
Heterozigoto , Complexo Principal de Histocompatibilidade/genética , Microbiota/genética , Animais , Fezes/microbiologia , Feminino , Variação Genética , Genótipo , Homozigoto , Camundongos
15.
Cell Host Microbe ; 25(2): 285-299.e8, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30763538

RESUMO

Bacteriophages are the most abundant members of the microbiota and have the potential to shape gut bacterial communities. Changes to bacteriophage composition are associated with disease, but how phages impact mammalian health remains unclear. We noted an induction of host immunity when experimentally treating bacterially driven cancer, leading us to test whether bacteriophages alter immune responses. Treating germ-free mice with bacteriophages leads to immune cell expansion in the gut. Lactobacillus, Escherichia, and Bacteroides bacteriophages and phage DNA stimulated IFN-γ via the nucleotide-sensing receptor TLR9. The resultant immune responses were both phage and bacteria specific. Additionally, increasing bacteriophage levels exacerbated colitis via TLR9 and IFN-γ. Similarly, ulcerative colitis (UC) patients responsive to fecal microbiota transplantation (FMT) have reduced phages compared to non-responders, and mucosal IFN-γ positively correlates with bacteriophage levels. Bacteriophages from active UC patients induced more IFN-γ compared to healthy individuals. Collectively, these results indicate that bacteriophages can alter mucosal immunity to impact mammalian health.


Assuntos
Bactérias/virologia , Bacteriófagos , Colite Ulcerativa/imunologia , Colite Ulcerativa/microbiologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Colite Ulcerativa/patologia , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Humanos , Interferon gama/metabolismo , Mucosa Intestinal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Projetos Piloto , Estudos Prospectivos , Organismos Livres de Patógenos Específicos
16.
JCI Insight ; 4(6)2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30721153

RESUMO

miR-155 has recently emerged as an important promoter of antitumor immunity through its functions in T lymphocytes. However, the impact of T cell-expressed miR-155 on immune cell dynamics in solid tumors remains unclear. In the present study, we used single-cell RNA sequencing to define the CD45+ immune cell populations at different time points within B16F10 murine melanoma tumors growing in either wild-type or miR-155 T cell conditional knockout (TCKO) mice. miR-155 was required for optimal T cell activation and reinforced the T cell response at the expense of infiltrating myeloid cells. Further, myeloid cells from tumors growing in TCKO mice were defined by an increase in wound healing genes and a decreased IFN-γ-response gene signature. Finally, we found that miR-155 expression predicted a favorable outcome in human melanoma patients and was associated with a strong immune signature. Moreover, gene expression analysis of The Cancer Genome Atlas (TCGA) data revealed that miR-155 expression also correlates with an immune-enriched subtype in 29 other human solid tumors. Together, our study provides an unprecedented analysis of the cell types and gene expression signatures of immune cells within experimental melanoma tumors and elucidates the role of miR-155 in coordinating antitumor immune responses in mammalian tumors.


Assuntos
Regulação Neoplásica da Expressão Gênica/imunologia , Melanoma Experimental/genética , MicroRNAs/metabolismo , Neoplasias/genética , Animais , Linhagem Celular Tumoral/transplante , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Estimativa de Kaplan-Meier , Ativação Linfocitária , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , Neoplasias/imunologia , Neoplasias/mortalidade , Neoplasias/patologia , Prognóstico , Análise de Sequência de RNA , Análise de Célula Única , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
17.
Development ; 145(4)2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29475973

RESUMO

Resident microbes promote many aspects of host development, although the mechanisms by which microbiota influence host tissues remain unclear. We showed previously that the microbiota is required for allocation of appropriate numbers of secretory cells in the zebrafish intestinal epithelium. Because Notch signaling is crucial for secretory fate determination, we conducted epistasis experiments to establish whether the microbiota modulates host Notch signaling. We also investigated whether innate immune signaling transduces microbiota cues via the Myd88 adaptor protein. We provide the first evidence that microbiota-induced, Myd88-dependent signaling inhibits host Notch signaling in the intestinal epithelium, thereby promoting secretory cell fate determination. These results connect microbiota activity via innate immune signaling to the Notch pathway, which also plays crucial roles in intestinal homeostasis throughout life and when impaired can result in chronic inflammation and cancer.


Assuntos
Mucosa Intestinal/metabolismo , Microbiota , Fator 88 de Diferenciação Mieloide/metabolismo , Receptores Notch/metabolismo , Animais , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiologia , Transdução de Sinais/fisiologia , Peixe-Zebra/metabolismo
18.
Proc Natl Acad Sci U S A ; 114(21): 5497-5502, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28487480

RESUMO

Symbiotic microbes impact the severity of a variety of diseases through regulation of T-cell development. However, little is known regarding the molecular mechanisms by which this is accomplished. Here we report that a secreted factor, Erdr1, is regulated by the microbiota to control T-cell apoptosis. Erdr1 expression was identified by transcriptome analysis to be elevated in splenic T cells from germfree and antibiotic-treated mice. Suppression of Erdr1 depends on detection of circulating microbial products by Toll-like receptors on T cells, and this regulation is conserved in human T cells. Erdr1 was found to function as an autocrine factor to induce apoptosis through caspase 3. Consistent with elevated levels of Erdr1, germfree mice have increased splenic T-cell apoptosis. RNA sequencing of Erdr1-overexpressing cells identified the up-regulation of genes involved in Fas-mediated cell death, and Erdr1 fails to induce apoptosis in Fas-deficient cells. Importantly, forced changes in Erdr1 expression levels dictate the survival of auto-reactive T cells and the clinical outcome of neuro-inflammatory autoimmune disease. Cellular survival is a fundamental feature regulating appropriate immune responses. We have identified a mechanism whereby the host integrates signals from the microbiota to control T-cell apoptosis, making regulation of Erdr1 a potential therapeutic target for autoimmune disease.


Assuntos
Apoptose , Proteínas de Membrana/fisiologia , Microbiota , Linfócitos T/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Encefalomielite Autoimune Experimental/metabolismo , Homeostase , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Receptor fas/metabolismo
19.
PLoS Biol ; 15(2): e2000689, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28207737

RESUMO

Sustaining a balanced intestinal microbial community is critical for maintaining intestinal health and preventing chronic inflammation. The gut is a highly dynamic environment, subject to periodic waves of peristaltic activity. We hypothesized that this dynamic environment is a prerequisite for a balanced microbial community and that the enteric nervous system (ENS), a chief regulator of physiological processes within the gut, profoundly influences gut microbiota composition. We found that zebrafish lacking an ENS due to a mutation in the Hirschsprung disease gene, sox10, develop microbiota-dependent inflammation that is transmissible between hosts. Profiling microbial communities across a spectrum of inflammatory phenotypes revealed that increased levels of inflammation were linked to an overabundance of pro-inflammatory bacterial lineages and a lack of anti-inflammatory bacterial lineages. Moreover, either administering a representative anti-inflammatory strain or restoring ENS function corrected the pathology. Thus, we demonstrate that the ENS modulates gut microbiota community membership to maintain intestinal health.


Assuntos
Sistema Nervoso Entérico/fisiologia , Microbioma Gastrointestinal , Intestinos/microbiologia , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Contagem de Células , Contagem de Colônia Microbiana , Disbiose/genética , Disbiose/microbiologia , Disbiose/patologia , Sistema Nervoso Entérico/citologia , Regulação da Expressão Gênica , Inflamação/genética , Inflamação/patologia , Intestinos/patologia , Contagem de Leucócitos , Modelos Biológicos , Mutação/genética , Neutrófilos/metabolismo , Filogenia , Fatores de Transcrição SOXE/metabolismo , Transplante de Células-Tronco , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
20.
PLoS One ; 11(4): e0153689, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27081855

RESUMO

Mammalian microRNA expression is dysregulated in human cancer. However, the functional relevance of many microRNAs in the context of tumor biology remains unclear. Using CRISPR-Cas9 technology, we performed a global loss-of-function screen to simultaneously test the functions of individual microRNAs and protein-coding genes during the growth of a myeloid leukemia cell line. This approach identified evolutionarily conserved human microRNAs that suppress or promote cell growth, revealing that microRNAs are extensively integrated into the molecular networks that control tumor cell physiology. miR-155 was identified as a top microRNA candidate promoting cellular fitness, which we confirmed with two distinct miR-155-targeting CRISPR-Cas9 lentiviral constructs. Further, we performed anti-correlation functional profiling to predict relevant microRNA-tumor suppressor gene or microRNA-oncogene interactions in these cells. This analysis identified miR-150 targeting of p53, a connection that was experimentally validated. Taken together, our study describes a powerful genetic approach by which the function of individual microRNAs can be assessed on a global level, and its use will rapidly advance our understanding of how microRNAs contribute to human disease.


Assuntos
Sistemas CRISPR-Cas , Genômica , Leucemia Mieloide/patologia , MicroRNAs/genética , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Sequência Conservada , Evolução Molecular , Humanos , Leucemia Mieloide/genética , Camundongos , Dados de Sequência Molecular , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA