Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(25): e2123439119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696581

RESUMO

Pyrotechnology is a key element of hominin evolution. The identification of fire in early hominin sites relies primarily on an initial visual assessment of artifacts' physical alterations, resulting in potential underestimation of the prevalence of fire in the archaeological record. Here, we used a suite of spectroscopic techniques to counter the absence of visual signatures for fire and demonstrate the presence of burnt fauna and lithics at the Lower Paleolithic (LP) open-air site of Evron Quarry (Israel), dated between 1.0 and 0.8 Mya and roughly contemporaneous to Gesher Benot Ya'aqov where early pyrotechnology has been documented. We propose reexamining finds from other LP sites lacking visual clues of pyrotechnology to yield a renewed perspective on the origin, evolution, and spatiotemporal dispersal of the relationship between early hominin behavior and fire use.


Assuntos
Evolução Biológica , Incêndios , Hominidae , Tecnologia , Animais , Arqueologia , Incêndios/história , História Antiga , Israel , Tecnologia/história
2.
Sci Total Environ ; 610-611: 1083-1091, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28847102

RESUMO

As a consequence of their growing use in electronic and industrial products, increasing amounts of technology critical elements (TCEs) are being released to the environment. Currently little is known about the fate of many of these elements. Initial research on their potential environmental impact identifies TCEs as emerging contaminants. TCE movement in the environment is often governed by water systems. Research on "natural" waters so far demonstrates that TCEs tend to be associated with suspended particulate matter (SPM), which influences TCE aqueous concentrations (here: concentration of TCEs in dissolved form and attached to SPM) and transport. However, the relative potential of different types of SPM to interact with TCEs is unknown. Here we examine the potential of various types of particulate matter, namely different nanoparticles (NPs; Al2O3, SiO2, CeO2, ZnO, montmorillonite, Ag, Au and carbon dots) and humic acid (HA), to impact TCE aqueous concentrations in aqueous solutions with soil and sand, and thus influence TCE transport in soil-water environments. We show that a combination of NPs and HA, and not NPs or HA individually, increases the aqueous concentrations of TCEs in soil solutions, for all tested NPs regardless of their type. TCEs retained on SPM, however, settle with time. In solutions with sand, HA alone is as influential as NPs+HA in keeping TCEs in the aqueous phase. Among NPs, Ag-NPs and Au-NPs demonstrate the highest potential for TCE transport. These results suggest that in natural soil-water environments, once TCEs are retained by soil, their partitioning to the aqueous phase by through-flowing water is unlikely. However, if TCEs are introduced to soil-water environments as part of solutions rich in NPs and HA, it is likely that NP and HA combinations can increase TCE stability in the aqueous phase and prevent their retention on soil and sand, thus facilitating TCE transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA