Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(10): 2446-2464.e22, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38582079

RESUMO

Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade in vitro and in vivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neurônios , Tauopatias , Proteínas tau , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas tau/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia , Neurônios/metabolismo , Neurônios/patologia , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Encéfalo/metabolismo , Encéfalo/patologia , Paralisia Supranuclear Progressiva/metabolismo , Paralisia Supranuclear Progressiva/patologia , Paralisia Supranuclear Progressiva/genética , Diferenciação Celular , Mutação , Autofagia
2.
Nat Neurosci ; 27(4): 629-642, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472649

RESUMO

The formation of mammalian synapses entails the precise alignment of presynaptic release sites with postsynaptic receptors but how nascent cell-cell contacts translate into assembly of presynaptic specializations remains unclear. Guided by pioneering work in invertebrates, we hypothesized that in mammalian synapses, liprin-α proteins directly link trans-synaptic initial contacts to downstream steps. Here we show that, in human neurons lacking all four liprin-α isoforms, nascent synaptic contacts are formed but recruitment of active zone components and accumulation of synaptic vesicles is blocked, resulting in 'empty' boutons and loss of synaptic transmission. Interactions with presynaptic cell adhesion molecules of either the LAR-RPTP family or neurexins via CASK are required to localize liprin-α to nascent synaptic sites. Liprin-α subsequently recruits presynaptic components via a direct interaction with ELKS proteins. Thus, assembly of human presynaptic terminals is governed by a hierarchical sequence of events in which the recruitment of liprin-α proteins by presynaptic cell adhesion molecules is a critical initial step.


Assuntos
Sinapses , Transmissão Sináptica , Animais , Humanos , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Neurônios/fisiologia , Proteínas de Transporte/metabolismo , Terminações Pré-Sinápticas/metabolismo , Moléculas de Adesão Celular , Mamíferos/metabolismo
3.
Eur J Hum Genet ; 31(8): 887-894, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36935417

RESUMO

Ribonuclease inhibitor 1, also known as angiogenin inhibitor 1, encoded by RNH1, is a ubiquitously expressed leucine-rich repeat protein, which is highly conserved in mammalian species. Inactivation of rnh1 in mice causes an embryonically lethal anemia, but the exact biological function of RNH1 in humans remains unknown and no human genetic disease has so far been associated with RNH1. Here, we describe a family with two out of seven siblings affected by a disease characterized by congenital cataract, global developmental delay, myopathy and psychomotor deterioration, seizures and periodic anemia associated with upper respiratory tract infections. A homozygous splice-site variant (c.615-2A > C) in RNH1 segregated with the disease. Sequencing of RNA derived from patient fibroblasts and cDNA analysis of skeletal muscle mRNA showed aberrant splicing with skipping of exon 7. Western blot analysis revealed a total lack of the RNH1 protein. Functional analysis revealed that patient fibroblasts were more sensitive to RNase A exposure, and this phenotype was reversed by transduction with a lentivirus expressing RNH1 to complement patient cells. Our results demonstrate that loss-of-function of RNH1 in humans is associated with a multiorgan developmental disease with recessive inheritance. It may be speculated that the infection-induced deterioration resulted from an increased susceptibility toward extracellular RNases and/or other inflammatory responses normally kept in place by the RNase inhibitor RNH1.


Assuntos
Anemia , Catarata , Humanos , Camundongos , Animais , Ribonucleases/metabolismo , Proteínas de Transporte/genética , Fatores de Transcrição/metabolismo , Anemia/genética , Catarata/genética , Mamíferos/metabolismo
4.
FEBS J ; 290(2): 252-265, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34699130

RESUMO

Synapses are the minimal information processing units of the brain and come in many flavors across distinct circuits. The shape and properties of a synapse depend on its molecular organisation, which is thought to largely depend on interactions between cell adhesion molecules across the synaptic cleft. An established example is that of presynaptic neurexins and their interactions with structurally diverse postsynaptic ligands: the diversity of neurexin isoforms that arise from alternative promoters and alternative splicing specify synaptic properties by dictating ligand preference. The recent finding that a majority of neurexin isoforms exist as proteoglycans with a single heparan sulfate (HS) polysaccharide adds to this complexity. Sequence motifs within the HS polysaccharide may differ between neuronal cell types to contribute specificity to its interactions, thereby expanding the coding capacity of neurexin diversity. However, an expanding number of HS-binding proteins have been found capable to recruit neurexins via the HS chain, challenging the concept of a code provided by neurexin splice isoforms. Here we discuss the possible roles of the neurexin HS in light of what is known from other HS-protein interactions, and propose a model for how the neurexin HS polysaccharide may contribute to synaptic assembly. We also discuss how the neurexin HS may be regulated by co-secreted carbonic anhydrase-related and FAM19A proteins, and highlight some key issues that should be resolved to advance the field.


Assuntos
Proteínas do Tecido Nervoso , Moléculas de Adesão de Célula Nervosa , Moléculas de Adesão de Célula Nervosa/genética , Moléculas de Adesão de Célula Nervosa/química , Moléculas de Adesão de Célula Nervosa/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Heparitina Sulfato/metabolismo
5.
EMBO Mol Med ; 13(5): e13376, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33938619

RESUMO

Lysosomal storage diseases, including mucopolysaccharidoses, result from genetic defects that impair lysosomal catabolism. Here, we describe two patients from two independent families presenting with progressive psychomotor regression, delayed myelination, brain atrophy, neutropenia, skeletal abnormalities, and mucopolysaccharidosis-like dysmorphic features. Both patients were homozygous for the same intronic variant in VPS16, a gene encoding a subunit of the HOPS and CORVET complexes. The variant impaired normal mRNA splicing and led to an ~85% reduction in VPS16 protein levels in patient-derived fibroblasts. Levels of other HOPS/CORVET subunits, including VPS33A, were similarly reduced, but restored upon re-expression of VPS16. Patient-derived fibroblasts showed defects in the uptake and endosomal trafficking of transferrin as well as accumulation of autophagosomes and lysosomal compartments. Re-expression of VPS16 rescued the cellular phenotypes. Zebrafish with disrupted vps16 expression showed impaired development, reduced myelination, and a similar accumulation of lysosomes and autophagosomes in the brain, particularly in glia cells. This disorder resembles previously reported patients with mutations in VPS33A, thus expanding the family of mucopolysaccharidosis-like diseases that result from mutations in HOPS/CORVET subunits.


Assuntos
Mucopolissacaridoses , Peixe-Zebra , Animais , Endossomos , Humanos , Lisossomos , Proteínas de Transporte Vesicular/genética
6.
EMBO Rep ; 22(4): e51349, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33586859

RESUMO

Neurexins are presynaptic adhesion molecules that shape the molecular composition of synapses. Diversification of neurexins in numerous isoforms is believed to confer synapse-specific properties by engaging with distinct ligands. For example, a subset of neurexin molecules carry a heparan sulfate (HS) glycosaminoglycan that controls ligand binding, but how this post-translational modification is controlled is not known. Here, we observe that CA10, a ligand to neurexin in the secretory pathway, regulates neurexin-HS formation. CA10 is exclusively found on non-HS neurexin and CA10 expressed in neurons is sufficient to suppress HS addition and attenuate ligand binding and synapse formation induced by ligands known to recruit HS. This effect is mediated by a direct interaction in the secretory pathway that blocks the primary step of HS biosynthesis: xylosylation of the serine residue. NMR reveals that CA10 engages residues on either side of the serine that can be HS-modified, suggesting that CA10 sterically blocks xylosyltransferase access in Golgi. These results suggest a mechanism for the regulation of HS on neurexins and exemplify a new mechanism to regulate site-specific glycosylations.


Assuntos
Proteínas do Tecido Nervoso , Moléculas de Adesão de Célula Nervosa , Proteínas de Ligação ao Cálcio/metabolismo , Heparitina Sulfato/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Via Secretória , Sinapses/metabolismo
7.
J Cell Biol ; 219(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32706374

RESUMO

Neurexins are presynaptic adhesion molecules that organize synapses by binding to diverse trans-synaptic ligands, but how neurexins are regulated is incompletely understood. Here we identify FAM19A/TAFA proteins, "orphan" cytokines, as neurexin regulators that interact with all neurexins, except for neurexin-1γ, via an unusual mechanism. Specifically, we show that FAM19A1-A4 bind to the cysteine-loop domain of neurexins by forming intermolecular disulfide bonds during transport through the secretory pathway. FAM19A-binding required both the cysteines of the cysteine-loop domain and an adjacent sequence of neurexins. Genetic deletion of neurexins suppressed FAM19A1 expression, demonstrating that FAM19As physiologically interact with neurexins. In hippocampal cultures, expression of exogenous FAM19A1 decreased neurexin O-glycosylation and suppressed its heparan sulfate modification, suggesting that FAM19As regulate the post-translational modification of neurexins. Given the selective expression of FAM19As in specific subtypes of neurons and their activity-dependent regulation, these results suggest that FAM19As serve as cell type-specific regulators of neurexin modifications.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Quimiocinas/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Hipocampo/metabolismo , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo
8.
J Biol Chem ; 295(27): 9244-9262, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32434929

RESUMO

Calsyntenin-3 (Clstn3) is a postsynaptic adhesion molecule that induces presynaptic differentiation via presynaptic neurexins (Nrxns), but whether Nrxns directly bind to Clstn3 has been a matter of debate. Here, using LC-MS/MS-based protein analysis, confocal microscopy, RNAscope assays, and electrophysiological recordings, we show that ß-Nrxns directly interact via their LNS domain with Clstn3 and Clstn3 cadherin domains. Expression of splice site 4 (SS4) insert-positive ß-Nrxn variants, but not insert-negative variants, reversed the impaired Clstn3 synaptogenic activity observed in Nrxn-deficient neurons. Consistently, Clstn3 selectively formed complexes with SS4-positive Nrxns in vivo Neuron-specific Clstn3 deletion caused significant reductions in number of excitatory synaptic inputs. Moreover, expression of Clstn3 cadherin domains in CA1 neurons of Clstn3 conditional knockout mice rescued structural deficits in excitatory synapses, especially within the stratum radiatum layer. Collectively, our results suggest that Clstn3 links to SS4-positive Nrxns to induce presynaptic differentiation and orchestrate excitatory synapse development in specific hippocampal neural circuits, including Schaffer collateral afferents.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Animais , Caderinas/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Cromatografia Líquida/métodos , Hipocampo/metabolismo , Proteínas de Membrana/fisiologia , Camundongos , Proteínas do Tecido Nervoso/fisiologia , Moléculas de Adesão de Célula Nervosa/fisiologia , Neurônios/metabolismo , Sinapses/metabolismo , Espectrometria de Massas em Tandem/métodos
9.
J Inherit Metab Dis ; 42(5): 898-908, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31276219

RESUMO

Exome sequencing has recently identified mutations in the gene TANGO2 (transport and Golgi organization 2) as a cause of developmental delay associated with recurrent crises involving rhabdomyolysis, cardiac arrhythmias, and metabolic derangements. The disease is not well understood, in part as the cellular function and subcellular localization of the TANGO2 protein remain unknown. Furthermore, the clinical syndrome with its heterogeneity of symptoms, signs, and laboratory findings is still being defined. Here, we describe 11 new cases of TANGO2-related disease, confirming and further expanding the previously described clinical phenotype. Patients were homozygous or compound heterozygous for previously described exonic deletions or new frameshift, splice site, and missense mutations. All patients showed developmental delay with ataxia, dysarthria, intellectual disability, or signs of spastic diplegia. Of importance, we identify two subjects (aged 12 and 17 years) who have never experienced any overt episode of the catabolism-induced metabolic crises typical for the disease. Mitochondrial complex II activity was mildly reduced in patients investigated in association with crises but normal in other patients. In one deceased patient, post-mortem autopsy revealed heterotopic neurons in the cerebral white matter, indicating a possible role for TANGO2 in neuronal migration. Furthermore, we have addressed the subcellular localization of several alternative isoforms of TANGO2, none of which were mitochondrial but instead appeared to have a primarily cytoplasmic localization. Previously described aberrations in Golgi morphology were not observed in cultured skin fibroblasts.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/deficiência , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Deficiências do Desenvolvimento/genética , Metabolismo Energético/genética , Deficiência Intelectual/genética , Mitocôndrias/genética , Adolescente , Translocador Nuclear Receptor Aril Hidrocarboneto/fisiologia , Ataxia/genética , Paralisia Cerebral/genética , Criança , Pré-Escolar , Disartria/genética , Exoma , Éxons , Feminino , Humanos , Masculino , Mutação , Linhagem , Fenótipo , Sequenciamento do Exoma
10.
Proc Natl Acad Sci U S A ; 114(7): E1253-E1262, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28154140

RESUMO

Establishment, specification, and validation of synaptic connections are thought to be mediated by interactions between pre- and postsynaptic cell-adhesion molecules. Arguably, the best-characterized transsynaptic interactions are formed by presynaptic neurexins, which bind to diverse postsynaptic ligands. In a proteomic screen of neurexin-1 (Nrxn1) complexes immunoisolated from mouse brain, we identified carbonic anhydrase-related proteins CA10 and CA11, two homologous, secreted glycoproteins of unknown function that are predominantly expressed in brain. We found that CA10 directly binds in a cis configuration to a conserved membrane-proximal, extracellular sequence of α- and ß-neurexins. The CA10-neurexin complex is stable and stoichiometric, and results in formation of intermolecular disulfide bonds between conserved cysteine residues in neurexins and CA10. CA10 promotes surface expression of α- and ß-neurexins, suggesting that CA10 may form a complex with neurexins in the secretory pathway that facilitates surface transport of neurexins. Moreover, we observed that the Nrxn1 gene expresses from an internal 3' promoter a third isoform, Nrxn1γ, that lacks all Nrxn1 extracellular domains except for the membrane-proximal sequences and that also tightly binds to CA10. Our data expand the understanding of neurexin-based transsynaptic interaction networks by providing further insight into the interactions nucleated by neurexins at the synapse.


Assuntos
Encéfalo/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio , Sequência Conservada , Células HEK293 , Humanos , Ligantes , Camundongos
11.
J Neurosci ; 37(5): 1062-1080, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986928

RESUMO

Three neuronal pentraxins are expressed in brain, the membrane-bound "neuronal pentraxin receptor" (NPR) and the secreted proteins NP1 and NARP (i.e., NP2). Neuronal pentraxins bind to AMPARs at excitatory synapses and play important, well-documented roles in the activity-dependent regulation of neural circuits via this binding activity. However, it is unknown whether neuronal pentraxins perform roles in synapses beyond modulating postsynaptic AMPAR-dependent plasticity, and whether they may even act in inhibitory synapses. Here, we show that NPR expressed in non-neuronal cells potently induces formation of both excitatory and inhibitory postsynaptic specializations in cocultured hippocampal neurons. Knockdown of NPR in hippocampal neurons, conversely, dramatically decreased assembly and function of both excitatory and inhibitory postsynaptic specializations. Overexpression of NPR rescued the NPR knockdown phenotype but did not in itself change synapse numbers or properties. However, the NPR knockdown decreased the levels of NARP, whereas NPR overexpression produced a dramatic increase in the levels of NP1 and NARP, suggesting that NPR recruits and stabilizes NP1 and NARP on the presynaptic plasma membrane. Mechanistically, NPR acted in excitatory synapse assembly by binding to the N-terminal domain of AMPARs; antagonists of AMPA and GABA receptors selectively inhibited NPR-induced heterologous excitatory and inhibitory synapse assembly, respectively, but did not affect neurexin-1ß-induced synapse assembly as a control. Our data suggest that neuronal pentraxins act as signaling complexes that function as general trans-synaptic organizers of both excitatory and inhibitory synapses by a mechanism that depends, at least in part, on the activity of the neurotransmitter receptors at these synapses. SIGNIFICANCE STATEMENT: Neuronal pentraxins comprise three neuronal proteins, neuronal pentraxin receptor (NPR) which is a type-II transmembrane protein on the neuronal surface, and secreted neuronal pentraxin-1 and NARP. The general functions of neuronal pentraxins at synapses have not been explored, except for their basic AMPAR binding properties. Here, we examined the functional role of NPR at synapses because it is the only neuronal pentraxin that is anchored to the neuronal cell-surface membrane. We find that NPR is a potent inducer of both excitatory and inhibitory heterologous synapses, and that knockdown of NPR in cultured neurons decreases the density of both excitatory and inhibitory synapses. Our data suggest that NPR performs a general, previously unrecognized function as a universal organizer of synapses.


Assuntos
Proteína C-Reativa/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Sinapses/fisiologia , Animais , Proteína C-Reativa/antagonistas & inibidores , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Técnicas de Cocultura , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Antagonistas GABAérgicos/farmacologia , Técnicas de Silenciamento de Genes , Células HEK293 , Hipocampo/fisiologia , Humanos , Camundongos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios , Técnicas de Patch-Clamp , RNA Interferente Pequeno/genética , Receptores de AMPA/metabolismo , Receptores de Superfície Celular/metabolismo
12.
Cell Transplant ; 22(9): 1529-39, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23051605

RESUMO

Degeneration of midbrain dopamine neurons causes the striatal dopamine deficiency responsible for the hallmark motor symptoms of Parkinson's disease (PD). Intraparenchymal delivery of neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), is a possible future therapeutic approach. In animal PD models, GDNF can both ameliorate neurodegeneration and promote recovery of the dopamine system following a toxic insult. However, clinical studies have generated mixed results, and GDNF has not been efficacious in genetic animal models based on α-synuclein overexpression. We have tested the response to GDNF in a genetic mouse PD model with progressive degeneration of dopamine neurons caused by mitochondrial impairment. We find that GDNF, delivered to the striatum by either an adeno-associated virus or via miniosmotic pumps, partially alleviates the progressive motor symptoms without modifying the rate of neurodegeneration. These behavioral changes are accompanied by increased levels of dopamine in the midbrain, but not in striatum. At high levels, GDNF may instead reduce striatal dopamine levels. These results demonstrate the therapeutic potential of GDNF in a progressively impaired dopamine system.


Assuntos
Terapia Genética/métodos , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/administração & dosagem , Fatores Neurotróficos Derivados de Linhagem de Célula Glial/genética , Doença de Parkinson/terapia , Adenoviridae/genética , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/biossíntese , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Imuno-Histoquímica , Masculino , Camundongos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Distribuição Aleatória
13.
Hum Mol Genet ; 21(22): 4827-35, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22914740

RESUMO

Mitochondrial dysfunction is implicated in aging and degenerative disorders such as Parkinson's disease (PD). Continuous fission and fusion of mitochondria shapes their morphology and is essential to maintain oxidative phosphorylation. Loss-of-function mutations in PTEN-induced kinase1 (PINK1) or Parkin cause a recessive form of PD and have been linked to altered regulation of mitochondrial dynamics. More specifically, the E3 ubiquitin ligase Parkin has been shown to directly regulate the levels of mitofusin 1 (Mfn1) and Mfn2, two homologous outer membrane large GTPases that govern mitochondrial fusion, but it is not known whether this is of relevance for disease pathophysiology. Here, we address the importance of Mfn1 and Mfn2 in midbrain dopamine (DA) neurons in vivo by characterizing mice with DA neuron-specific knockout of Mfn1 or Mfn2. We find that Mfn1 is dispensable for DA neuron survival and motor function. In contrast, Mfn2 DA neuron-specific knockouts develop a fatal phenotype with reduced weight, locomotor disturbances and death by 7 weeks of age. Mfn2 knockout DA neurons have spherical and enlarged mitochondria with abnormal cristae and impaired respiratory chain function. Parkin does not translocate to these defective mitochondria. Surprisingly, Mfn2 DA neuron-specific knockout mice have normal numbers of midbrain DA neurons, whereas there is a severe loss of DA nerve terminals in the striatum, accompanied by depletion of striatal DA levels. These results show that Mfn2, but not Mfn1, is required for axonal projections of DA neurons in vivo.


Assuntos
Axônios/metabolismo , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Mesencéfalo/metabolismo , Animais , Transporte de Elétrons/genética , Feminino , Genes Letais , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fenótipo , Transporte Proteico , Ubiquitina-Proteína Ligases/metabolismo
14.
Hum Mol Genet ; 21(5): 1078-89, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22090423

RESUMO

A variety of observations support the hypothesis that deficiency of complex I [reduced nicotinamide-adenine dinucleotide (NADH):ubiquinone oxidoreductase] of the mitochondrial respiratory chain plays a role in the pathophysiology of Parkinson's disease (PD). However, recent data from a study using mice with knockout of the complex I subunit NADH:ubiquinone oxidoreductase iron-sulfur protein 4 (Ndufs4) has challenged this concept as these mice show degeneration of non-dopamine neurons. In addition, primary dopamine (DA) neurons derived from such mice, reported to lack complex I activity, remain sensitive to toxins believed to act through inhibition of complex I. We tissue-specifically disrupted the Ndufs4 gene in mouse heart and found an apparent severe deficiency of complex I activity in disrupted mitochondria, whereas oxidation of substrates that result in entry of electrons at the level of complex I was only mildly reduced in intact isolated heart mitochondria. Further analyses of detergent-solubilized mitochondria showed the mutant complex I to be unstable but capable of forming supercomplexes with complex I enzyme activity. The loss of Ndufs4 thus causes only a mild complex I deficiency in vivo. We proceeded to disrupt Ndufs4 in midbrain DA neurons and found no overt neurodegeneration, no loss of striatal innervation and no symptoms of Parkinsonism in tissue-specific knockout animals. However, DA homeostasis was abnormal with impaired DA release and increased levels of DA metabolites. Furthermore, Ndufs4 DA neuron knockouts were more vulnerable to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Taken together, these findings lend in vivo support to the hypothesis that complex I deficiency can contribute to the pathophysiology of PD.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Complexo I de Transporte de Elétrons/deficiência , Intoxicação por MPTP/metabolismo , Mitocôndrias Cardíacas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Estabilidade Enzimática , Homeostase , Intoxicação por MPTP/patologia , Intoxicação por MPTP/fisiopatologia , Mesencéfalo/metabolismo , Mesencéfalo/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Miocárdio/metabolismo
15.
Proc Natl Acad Sci U S A ; 108(31): 12937-42, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21768369

RESUMO

Mitochondrial dysfunction is heavily implicated in Parkinson disease (PD) as exemplified by the finding of an increased frequency of respiratory chain-deficient dopamine (DA) neurons in affected patients. An inherited form of PD is caused by impaired function of Parkin, an E3 ubiquitin ligase reported to translocate to defective mitochondria in vitro to facilitate their clearance. We have developed a reporter mouse to assess mitochondrial morphology in DA neurons in vivo and show here that respiratory chain deficiency leads to fragmentation of the mitochondrial network and to the formation of large cytoplasmic bodies derived from mitochondria. Surprisingly, the dysfunctional mitochondria do not recruit Parkin in vivo, and neither the clearance of defective mitochondria nor the neurodegeneration phenotype is affected by the absence of Parkin. We also show that anterograde axonal transport of mitochondria is impaired in respiratory chain-deficient DA neurons, leading to a decreased supply of mitochondria to the axonal terminals.


Assuntos
Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Neurônios/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Axônios/metabolismo , Western Blotting , Dopamina/metabolismo , Feminino , Células HeLa , Humanos , Imuno-Histoquímica , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Mitocôndrias/genética , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Neurônios/patologia , Transporte Proteico , Ubiquitina-Proteína Ligases/genética
16.
Biochem Biophys Res Commun ; 398(4): 759-64, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20633537

RESUMO

LRPPRC (also called LRP130) is an RNA-binding pentatricopeptide repeat protein. LRPPRC has been recognized as a mitochondrial protein, but has also been shown to regulate nuclear gene transcription and to bind specific RNA molecules in both the nucleus and the cytoplasm. We here present a bioinformatic analysis of the LRPPRC primary sequence, which reveals that orthologs to the LRPPRC gene are restricted to metazoan cells and that all of the corresponding proteins contain mitochondrial targeting signals. To address the subcellular localization further, we have carefully analyzed LRPPRC in mammalian cells and identified a single isoform that is exclusively localized to mitochondria. The LRPPRC protein is imported to the mitochondrial matrix and its mitochondrial targeting sequence is cleaved upon entry.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Sequência Conservada , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/classificação , Proteínas Mitocondriais/genética , Proteínas de Neoplasias/classificação , Proteínas de Neoplasias/genética , Filogenia , Estrutura Terciária de Proteína , Transporte Proteico , Sequências Repetitivas de Aminoácidos
17.
N Engl J Med ; 361(5): 489-95, 2009 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-19641205

RESUMO

The mitochondrial aspartate-glutamate carrier isoform 1 (AGC1), specific to neurons and muscle, supplies aspartate to the cytosol and, as a component of the malate-aspartate shuttle, enables mitochondrial oxidation of cytosolic NADH, thought to be important in providing energy for neurons in the central nervous system. We describe AGC1 deficiency, a novel syndrome characterized by arrested psychomotor development, hypotonia, and seizures in a child with a homozygous missense mutation in the solute carrier family 25, member 12, gene SLC25A12, which encodes the AGC1 protein. Functional analysis of the mutant AGC1 protein showed abolished activity. The child had global hypomyelination in the cerebral hemispheres, suggesting that impaired efflux of aspartate from neuronal mitochondria prevents normal myelin formation.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Antiporters/deficiência , Cérebro/patologia , Epilepsia/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Mutação de Sentido Incorreto , Transtornos Psicomotores/genética , Ácido Aspártico/metabolismo , Pré-Escolar , Feminino , Homozigoto , Humanos , Imageamento por Ressonância Magnética , Mitocôndrias/metabolismo , Hipotonia Muscular/genética , Isoformas de Proteínas , Análise de Sequência de DNA , Síndrome
18.
Mol Cell Neurosci ; 39(4): 586-91, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18790059

RESUMO

LRRK2, alpha-synuclein, UCH-L1 and DJ-1 are implicated in the etiology of Parkinson's disease. We show for the first time that increase in striatal alpha-synuclein levels induce increased Lrrk2 mRNA levels while Dj-1 and Uch-L1 are unchanged. We also demonstrate that a mouse strain lacking the dopamine signaling molecule DARPP-32 has significantly reduced levels of both Lrrk2 and alpha-synuclein, while mice carrying a disabling mutation of the DARPP-32 phosphorylation site T34A or lack alpha-synuclein do not show any changes. To test if striatal dopamine depletion influences Lrrk2 or alpha-synuclein expression, we used the neurotoxin 6-hydroxydopamine in rats and MitoPark mice in which there is progressive degeneration of dopamine neurons. Because striatal Lrrk2 and alpha-synuclein levels were not changed by dopamine depletion, we conclude that Lrrk2 and alpha-synuclein mRNA levels are possibly co-regulated, but they are not influenced by striatal dopamine levels.


Assuntos
Corpo Estriado/metabolismo , Doença de Parkinson/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , alfa-Sinucleína/metabolismo , Animais , Corpo Estriado/anatomia & histologia , Dopamina/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Feminino , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Oxidopamina/metabolismo , Doença de Parkinson/etiologia , Proteínas Serina-Treonina Quinases/genética , Ratos , Ratos Sprague-Dawley , alfa-Sinucleína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA