Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 42(1): 52-69.e7, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065100

RESUMO

Breast cancer mortality results from incurable recurrences thought to be seeded by dormant, therapy-refractory residual tumor cells (RTCs). Understanding the mechanisms enabling RTC survival is therefore essential for improving patient outcomes. Here, we derive a dormancy-associated RTC signature that mirrors the transcriptional response to neoadjuvant therapy in patients and is enriched for extracellular matrix-related pathways. In vivo CRISPR-Cas9 screening of dormancy-associated candidate genes identifies the galactosyltransferase B3GALT6 as a functional regulator of RTC fitness. B3GALT6 is required for glycosaminoglycan (GAG) linkage to proteins to generate proteoglycans, and its germline loss of function in patients causes skeletal dysplasias. We find that B3GALT6-mediated biosynthesis of heparan sulfate GAGs predicts poor patient outcomes and promotes tumor recurrence by enhancing dormant RTC survival in multiple contexts, and does so via a B3GALT6-heparan sulfate/HS6ST1-heparan 6-O-sulfation/FGF1-FGFR2 signaling axis. These findings implicate B3GALT6 in cancer and nominate FGFR2 inhibition as a promising approach to eradicate dormant RTCs and prevent recurrence.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Sobrevivência Celular/genética , Recidiva Local de Neoplasia/genética , Heparitina Sulfato/metabolismo , Glicosaminoglicanos/metabolismo , Galactosiltransferases/genética
2.
Breast Cancer Res ; 25(1): 1, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597146

RESUMO

BACKGROUND: Breast cancer mortality is principally due to recurrent disease that becomes resistant to therapy. We recently identified copy number (CN) gain of the putative membrane progesterone receptor PAQR8 as one of four focal CN alterations that preferentially occurred in recurrent metastatic tumors compared to primary tumors in breast cancer patients. Whether PAQR8 plays a functional role in cancer is unknown. Notably, PAQR8 CN gain in recurrent tumors was mutually exclusive with activating ESR1 mutations in patients treated with anti-estrogen therapies and occurred in > 50% of both patients treated with anti-estrogen therapies and those treated with chemotherapy or anti-Her2 agents. METHODS: We used orthotopic mouse models to determine whether PAQR8 overexpression or deletion alters breast cancer dormancy or recurrence following therapy. In vitro studies, including assays for colony formation, cell viability, and relative cell fitness, were employed to identify effects of PAQR8 in the context of therapy. Cell survival and proliferation were quantified by immunofluorescence staining for markers of apoptosis and proliferation. Sphingolipids were quantified by liquid chromatography-high resolution mass spectrometry. RESULTS: We show that PAQR8 is necessary and sufficient for efficient mammary tumor recurrence in mice, spontaneously upregulated and CN gained in recurrent tumors that arise following therapy in multiple mouse models, and associated with poor survival following recurrence as well as poor overall survival in breast cancer patients. PAQR8 promoted resistance to therapy by enhancing tumor cell survival following estrogen receptor pathway inhibition by fulvestrant or estrogen deprivation, Her2 pathway blockade by lapatinib or Her2 downregulation, and treatment with chemotherapeutic agents. Pro-survival effects of PAQR8 were mediated by a Gi protein-dependent reduction in cAMP levels, did not require progesterone, and involved a PAQR8-dependent decrease in ceramide levels and increase in sphingosine-1-phosphate levels, suggesting that PAQR8 may possess ceramidase activity. CONCLUSIONS: Our data provide in vivo evidence that PAQR8 plays a functional role in cancer, implicate PAQR8, cAMP, and ceramide metabolism in breast cancer recurrence, and identify a novel mechanism that may commonly contribute to the acquisition of treatment resistance in breast cancer patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia , Animais , Camundongos , Resistencia a Medicamentos Antineoplásicos/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Lapatinib , Fulvestranto , Receptor ErbB-2/metabolismo , Estrogênios , Receptores de Progesterona
3.
Breast Cancer Res ; 23(1): 63, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088357

RESUMO

BACKGROUND: Breast cancer mortality is principally due to tumor recurrence, which can occur following extended periods of clinical remission that may last decades. While clinical latency has been postulated to reflect the ability of residual tumor cells to persist in a dormant state, this hypothesis remains unproven since little is known about the biology of these cells. Consequently, defining the properties of residual tumor cells is an essential goal with important clinical implications for preventing recurrence and improving cancer outcomes. METHODS: To identify conserved features of residual tumor cells, we modeled minimal residual disease using inducible transgenic mouse models for HER2/neu and Wnt1-driven tumorigenesis that recapitulate cardinal features of human breast cancer progression, as well as human breast cancer cell xenografts subjected to targeted therapy. Fluorescence-activated cell sorting was used to isolate tumor cells from primary tumors, residual lesions following oncogene blockade, and recurrent tumors to analyze gene expression signatures and evaluate tumor-initiating cell properties. RESULTS: We demonstrate that residual tumor cells surviving oncogenic pathway inhibition at both local and distant sites exist in a state of cellular dormancy, despite adequate vascularization and the absence of adaptive immunity, and retain the ability to re-enter the cell cycle and give rise to recurrent tumors after extended latency periods. Compared to primary or recurrent tumor cells, dormant residual tumor cells possess unique features that are conserved across mouse models for human breast cancer driven by different oncogenes, and express a gene signature that is strongly associated with recurrence-free survival in breast cancer patients and similar to that of tumor cells in which dormancy is induced by the microenvironment. Although residual tumor cells in both the HER2/neu and Wnt1 models are enriched for phenotypic features associated with tumor-initiating cells, limiting dilution experiments revealed that residual tumor cells are not enriched for cells capable of giving rise to primary tumors, but are enriched for cells capable of giving rise to recurrent tumors, suggesting that tumor-initiating populations underlying primary tumorigenesis may be distinct from those that give rise to recurrence following therapy. CONCLUSIONS: Residual cancer cells surviving targeted therapy reside in a well-vascularized, desmoplastic microenvironment at both local and distant sites. These cells exist in a state of cellular dormancy that bears little resemblance to primary or recurrent tumor cells, but shares similarities with cells in which dormancy is induced by microenvironmental cues. Our observations suggest that dormancy may be a conserved response to targeted therapy independent of the oncogenic pathway inhibited or properties of the primary tumor, that the mechanisms underlying dormancy at local and distant sites may be related, and that the dormant state represents a potential therapeutic target for preventing cancer recurrence.


Assuntos
Terapia de Alvo Molecular , Neoplasia Residual/patologia , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Intervalo Livre de Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Terapia de Alvo Molecular/efeitos adversos , Metástase Neoplásica , Recidiva Local de Neoplasia , Neoplasia Residual/irrigação sanguínea , Neoplasia Residual/etiologia , Neoplasia Residual/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/patologia , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Proteína Wnt1/antagonistas & inibidores , Proteína Wnt1/genética
4.
Breast Cancer Res ; 21(1): 41, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867005

RESUMO

BACKGROUND: Obesity is associated with an increased risk of breast cancer recurrence and cancer death. Recurrent cancers arise from the pool of residual tumor cells, or minimal residual disease (MRD), that survives primary treatment and persists in the host. Whether the association of obesity with recurrence risk is causal is unknown, and the impact of obesity on MRD and breast cancer recurrence has not been reported in humans or in animal models. METHODS: Doxycycline-inducible primary mammary tumors were generated in intact MMTV-rtTA;TetO-HER2/neu (MTB/TAN) mice or orthotopic recipients fed a high-fat diet (HFD; 60% kcal from fat) or a control low-fat diet (LFD; 10% kcal from fat). Following oncogene downregulation and tumor regression, mice were followed for clinical recurrence. Body weight was measured twice weekly and used to segregate HFD mice into obese (i.e., responders) and lean (i.e., nonresponders) study arms, and obesity was correlated with body fat percentage, glucose tolerance (measured using intraperitoneal glucose tolerance tests), serum biomarkers (measured by enzyme-linked immunosorbent assay), and tissue transcriptomics (assessed by RNA sequencing). MRD was quantified by droplet digital PCR. RESULTS: HFD-Obese mice weighed significantly more than HFD-Lean and LFD control mice (p < 0.001) and had increased body fat percentage (p < 0.001). Obese mice exhibited fasting hyperglycemia, hyperinsulinemia, and impaired glucose tolerance, as well as decreased serum levels of adiponectin and increased levels of leptin, resistin, and insulin-like growth factor 1. Tumor recurrence was accelerated in HFD-Obese mice compared with HFD-Lean and LFD control mice (median relapse-free survival 53.0 days vs. 87.0 days vs. 80.0 days, log-rank p < 0.001; HFD-Obese compared with HFD-Lean HR 2.52, 95% CI 1.52-4.16; HFD-Obese compared with LFD HR 2.27, 95% CI 1.42-3.63). HFD-Obese mice harbored a significantly greater number of residual tumor cells than HFD-Lean and LFD mice (12,550 ± 991 vs. 7339 ± 2182 vs. 4793 ± 1618 cells, p < 0.001). CONCLUSION: These studies provide a genetically engineered mouse model for study of the association of diet-induced obesity with breast cancer recurrence. They demonstrate that this model recapitulates physiological changes characteristic of obese patients, establish that the association between obesity and recurrence risk is causal in nature, and suggest that obesity is associated with the increased survival and persistence of residual tumor cells.


Assuntos
Neoplasias da Mama/mortalidade , Neoplasias Mamárias Experimentais/patologia , Recidiva Local de Neoplasia/patologia , Obesidade/patologia , Animais , Índice de Massa Corporal , Peso Corporal , Neoplasias da Mama/patologia , Linhagem Celular Tumoral/transplante , Conjuntos de Dados como Assunto , Dieta Hiperlipídica/efeitos adversos , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/mortalidade , Camundongos Obesos , Camundongos Transgênicos , Recidiva Local de Neoplasia/mortalidade , Neoplasia Residual , Obesidade/etiologia , Receptor ErbB-2/genética , Análise de Sobrevida
5.
J Clin Invest ; 125(6): 2484-96, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25961456

RESUMO

Breast cancer mortality is principally due to recurrent tumors that arise from a reservoir of residual tumor cells that survive therapy. Remarkably, breast cancers can recur after extended periods of clinical remission, implying that at least some residual tumor cells pass through a dormant phase prior to relapse. Nevertheless, the mechanisms that contribute to breast cancer recurrence are poorly understood. Using a mouse model of recurrent mammary tumorigenesis in combination with bioinformatics analyses of breast cancer patients, we have identified a role for Notch signaling in mammary tumor dormancy and recurrence. Specifically, we found that Notch signaling is acutely upregulated in tumor cells following HER2/neu pathway inhibition, that Notch signaling remains activated in a subset of dormant residual tumor cells that persist following HER2/neu downregulation, that activation of Notch signaling accelerates tumor recurrence, and that inhibition of Notch signaling by either genetic or pharmacological approaches impairs recurrence in mice. Consistent with these findings, meta-analysis of microarray data from over 4,000 breast cancer patients revealed that elevated Notch pathway activity is independently associated with an increased rate of recurrence. Together, these results implicate Notch signaling in tumor recurrence from dormant residual tumor cells and provide evidence that dormancy is a targetable stage of breast cancer progression.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Recidiva Local de Neoplasia/metabolismo , Receptor ErbB-2 , Receptores Notch/metabolismo , Transdução de Sinais , Idoso , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Metanálise como Assunto , Camundongos , Camundongos Nus , Camundongos Transgênicos , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Notch/genética , Células Tumorais Cultivadas
6.
Carcinogenesis ; 32(10): 1441-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21771729

RESUMO

Inhibition of cyclooxygenase (COX) 2, which is associated with >40% of breast cancers, decreases the risk of tumorigenesis and breast cancer recurrence. To study the role of COX-2 in breast cancer, we engineered mice that lack selectively mammary epithelial cell (MEC) COX-2 (COX-2 KO(MEC)). Compared with wild type (WT), MEC from COX-2 KO(MEC) mice expressed >90% less COX-2 messenger RNA (mRNA) and protein and produced 90% less of the dominant pro-oncogenic COX-2 product, prostaglandin (PG) E(2). We confirmed COX-2 as the principle source of PGE(2) in MEC treated with selective COX-2 and COX-1 inhibitors. Tumors were induced in mice using medroxyprogesterone acetate and 7,12-dimethylbenz[a]anthracene. Breast cancer onset was significantly delayed in COX-2 KO(MEC) compared with WT (P = 0.03), equivalent to the delay following systemic COX-2 inhibition with rofecoxib. Compared with WT, COX-2 KO(MEC) tumors showed increased mRNA for Caspase-3, Ki-67 and common markers for leukocytes (CD45) and macrophages (F4/80). Analysis of multiple markers/cytokines, namely CD86, inducible nitric oxide synthase (iNOS), interleukin-6, tumor necrosis factor α (TNFα) and Tim-3 indicated a shift toward antitumorigenic type 1 immune responses in COX-2 KO(MEC) tumors. Immunohistochemical analysis confirmed elevated expression of CD45, F4/80 and CD86 in COX-2 KO(MEC) tumors. Concordant with a role for COX-2 in restraining M1 macrophage polarization, CD86 and TNFα expression were offset by exogenous PGE(2) in bone marrow-derived macrophages polarized in vitro to the M1 phenotype. Our data reveal the importance of epithelial COX-2 in tumor promotion and indicate that deletion of epithelial COX-2 may skew tumor immunity toward type 1 responses, coincident with delayed tumor development.


Assuntos
Ciclo-Oxigenase 2/fisiologia , Células Epiteliais/imunologia , Glândulas Mamárias Animais/imunologia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/prevenção & controle , Células Th1/imunologia , 9,10-Dimetil-1,2-benzantraceno/toxicidade , Animais , Western Blotting , Carcinógenos/toxicidade , Células Cultivadas , Anticoncepcionais Orais Sintéticos/toxicidade , Citocinas/metabolismo , Eicosanoides/metabolismo , Células Epiteliais/metabolismo , Feminino , Técnicas Imunoenzimáticas , Mediadores da Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/metabolismo , Masculino , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/induzido quimicamente , Medroxiprogesterona/toxicidade , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Th1/metabolismo
7.
Cancer Cell ; 8(3): 197-209, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16169465

RESUMO

Breast cancer recurrence is a fundamental clinical manifestation of tumor progression and represents the principal cause of death from this disease. Using a conditional transgenic mouse model for the recurrence of HER2/neu-induced mammary tumors, we demonstrate that the transcriptional repressor Snail is spontaneously upregulated in recurrent tumors in vivo and that recurrence is accompanied by epithelial-to-mesenchymal transition (EMT). Consistent with a causal role for Snail in these processes, we show that Snail is sufficient to induce EMT in primary tumor cells, that Snail is sufficient to promote mammary tumor recurrence in vivo, and that high levels of Snail predict decreased relapse-free survival in women with breast cancer. In aggregate, our observations strongly implicate Snail in the process of breast cancer recurrence.


Assuntos
Neoplasias Mamárias Experimentais/genética , Recidiva Local de Neoplasia/genética , Fatores de Transcrição/genética , Animais , Neoplasias da Mama/genética , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Mamárias Experimentais/patologia , Mesoderma/patologia , Camundongos , Camundongos Transgênicos , Recidiva Local de Neoplasia/patologia , Receptor ErbB-2/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA