Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Zoology (Jena) ; 165: 126184, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38936326

RESUMO

Disproportional changes (i.e. allometry) in shark morphology relative to increasing body size have been attributed to shifts in function associated with niche shifts in life history, such as in habitat and diet. Photographs of blue sharks (Prionace glauca, 26-145 kg) were used to analyze changes in parameters of body and fin morphology with increasing mass that are fundamental to swimming and feeding. We hypothesized that blue sharks would demonstrate proportional changes (i.e. isometry) in morphology with increasing mass because they do not undergo profound changes in prey and habitat type; accordingly, due to geometric scaling laws, we predicted that blue sharks would grow into bodies with greater turning inertias and smaller frontal and surface areas, in addition to smaller spans and areas of the fins relative to mass, which are parameters that are associated with the swimming performance in sharks. Many aspects of morphology increased with isometry. However, blue sharks demonstrated negative allometry in body density, whereas surface area, volume and roll inertia of the body, area, span and aspect ratio of both dorsal fins, span and aspect ratio of the ventral caudal fin, and span, length and area of the mouth increased with positive allometry. The dataset was divided in half based on mass to form two groups: smaller and larger sharks. Besides area of both dorsal fins, relative to mass, larger sharks had bodies with significantly greater turning inertia and smaller frontal and surface areas, in addition to fins with smaller spans and areas, compared to smaller sharks. In conclusion, isometric scaling does not necessarily imply functional similarity, and allometric scaling may sometimes be critical in maintaining, rather than shifting, function relative to mass in animals that swim through the water column.

2.
Curr Biol ; 34(12): 2764-2772.e3, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38834065

RESUMO

The emergence and subsequent evolution of pectoral fins is a key point in vertebrate evolution, as pectoral fins are dominant control surfaces for locomotion in extant fishes.1,2,3 However, major gaps remain in our understanding of the diversity and evolution of pectoral fins among cartilaginous fishes (Chondrichthyes), a group with an evolutionary history spanning over 400 million years with current selachians (modern sharks) appearing about 200 million years ago.4,5,6 Modern sharks are a charismatic group of vertebrates often thought to be predators roaming the open ocean and coastal areas, but most extant species occupy the seafloor.4 Here we use an integrative approach to understand what facilitated the expansion to the pelagic realm and what morphological changes accompanied this shift. On the basis of comparative analyses in the framework of a time-calibrated molecular phylogeny,7 we show that modern sharks expanded to the pelagic realm no later than the Early Cretaceous (Barremian). The pattern of pectoral fin aspect ratios across selachians is congruent with adaptive evolution, and we identify an increase of the subclade disparity of aspect ratio at a time when sea surface temperatures were at their highest.8 The expansion to open ocean habitats likely involved extended bouts of sustained fast swimming, which led to the selection for efficient movement via higher aspect ratio pectoral fins. Swimming performance was likely enhanced in pelagic sharks during this time due to the elevated temperatures in the sea, highlighting that shark evolution has been greatly impacted by climate change.


Assuntos
Nadadeiras de Animais , Evolução Biológica , Tubarões , Animais , Nadadeiras de Animais/anatomia & histologia , Tubarões/anatomia & histologia , Tubarões/fisiologia , Filogenia , Fósseis/anatomia & histologia
3.
Ecol Evol ; 14(3): e11163, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500855

RESUMO

While sexual size dimorphism (SSD) is abundant in nature, there is huge variation in both the intensity and direction of SSD. SSD results from a combination of sexual selection for large male size, fecundity selection for large female size and ecological selection for either. In most vertebrates, it is variation in the intensity of male-male competition that primarily underlies variation in SSD. In this study, we test four hypotheses regarding the adaptive value of SSD in sharks-considering the potential for each of fecundity, sexual, ecological selection and reproductive mode as the primary driver of variation in SSD between species. We also estimate past macroevolutionary shifts in SSD direction/intensity through shark phylogeny. We were unable to find evidence of significant SSD in early sharks and hypothesise that SSD is a derived state in this clade, that has evolved independently of SSD observed in other vertebrates. Moreover, there is no significant relationship between SSD and fecundity, testes mass or oceanic depth in sharks. However, there is evidence to support previous speculation that reproductive mode is an important determinant of interspecific variation in SSD in sharks. This is significant as in most vertebrates sexual selection is thought to be the primary driver of SSD trends, with evidence for the role of fecundity selection in other clades being inconsistent at best. While the phylogenetic distribution of SSD among sharks is superficially similar to that observed in other vertebrate clades, the relative importance of selective pressures underlying its evolution appears to differ.

4.
Zoology (Jena) ; 140: 125799, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32413674

RESUMO

Sharks are among the oldest vertebrate lineages in which their success has been attributed to their diversity in body shape and locomotor design. In this study, we investigated the diversity of body forms in extant sharks using landmark-based geometric morphometric analyses on nearly all the known (ca. 470) extant sharks. We ran three different analyses: the 'full body,' 'precaudal body,' and 'caudal fin' analyses. Our study suggests that there are two basic body forms in sharks, a 'shallow-bodied' form (Group A) and 'deep-bodied' form (Group B), where all sharks essentially have one basic caudal fin design of a heterocercal tail despite some specializations. We found that swimming modes in sharks are highly correlated with body forms where Group A sharks are predominantly anguilliform swimmers and Group B sharks are represented by carangiform and thunniform swimmers. The majority of Group A sharks are found to be benthic whereas pelagic forms are relatively common among Group B sharks. Each of the two superorders of sharks, Squalomorphii and Galeomorphii, must have gone through complex evolutionary history where each superorder contains both Group A sharks and Group B sharks, possibly involving parallel evolution from one group to the other or at least one episode of evolutionary reversal.


Assuntos
Filogenia , Tubarões/anatomia & histologia , Animais , Ecossistema , Comportamento Alimentar , Tubarões/genética , Tubarões/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA