Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurooncol Adv ; 2(1): vdaa001, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32642673

RESUMO

BACKGROUND: The median survival for patients with glioblastoma (GBM), the most common primary malignant brain tumor in adults, has remained approximately 1 year for more than 2 decades. Recent advances in the field have identified GBM as a sexually dimorphic disease. It is less prevalent in females and they have better survival compared to males. The molecular mechanism of this difference has not yet been established. Iron is essential for many biological processes supporting tumor growth and its regulation is impacted by sex. Therefore, we interrogated the expression of a key component of cellular iron regulation, the HFE (homeostatic iron regulatory) gene, on sexually dimorphic survival in GBM. METHODS: We analyzed TCGA microarray gene expression and clinical data of all primary GBM patients (IDH-wild type) to compare tumor mRNA expression of HFE with overall survival, stratified by sex. RESULTS: In low HFE expressing tumors (below median expression, n = 220), survival is modulated by both sex and MGMT status, with the combination of female sex and MGMT methylation resulting in over a 10-month survival advantage (P < .0001) over the other groups. Alternatively, expression of HFE above the median (high HFE, n = 240) is associated with significantly worse overall survival in GBM, regardless of MGMT methylation status or patient sex. Gene expression analysis uncovered a correlation between high HFE expression and expression of genes associated with immune function. CONCLUSIONS: The level of HFE expression in GBM has a sexually dimorphic impact on survival. Whereas HFE expression below the median imparts a survival benefit to females, high HFE expression is associated with significantly worse overall survival regardless of established prognostic factors such as sex or MGMT methylation.

2.
Mol Cell Proteomics ; 15(7): 2356-65, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27143410

RESUMO

Glioblastoma multiforme (GBM) is a genomically complex and aggressive primary adult brain tumor, with a median survival time of 12-14 months. The heterogeneous nature of this disease has made the identification and validation of prognostic biomarkers difficult. Using reverse phase protein array data from 203 primary untreated GBM patients, we have identified a set of 13 proteins with prognostic significance. Our protein signature predictive of glioblastoma (PROTGLIO) patient survival model was constructed and validated on independent data sets and was shown to significantly predict survival in GBM patients (log-rank test: p = 0.0009). Using a multivariate Cox proportional hazards, we have shown that our PROTGLIO model is distinct from other known GBM prognostic factors (age at diagnosis, extent of surgical resection, postoperative Karnofsky performance score (KPS), treatment with temozolomide (TMZ) chemoradiation, and methylation of the MGMT gene). Tenfold cross-validation repetition of our model generation procedure confirmed validation of PROTGLIO. The model was further validated on an independent set of isocitrate dehydrogenase wild-type (IDHwt) lower grade gliomas (LGG)-a portion of these tumors progress rapidly to GBM. The PROTGLIO model contains proteins, such as Cox-2 and Annexin 1, involved in inflammatory response, pointing to potential therapeutic interventions. The PROTGLIO model is a simple and effective predictor of overall survival in glioblastoma patients, making it potentially useful in clinical practice of glioblastoma multiforme.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Proteômica/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Dacarbazina/administração & dosagem , Dacarbazina/uso terapêutico , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Análise de Sobrevida , Temozolomida , Adulto Jovem
4.
BMC Genomics ; 15 Suppl 7: S2, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25573145

RESUMO

BACKGROUND: A challenge in precision medicine is the transformation of genomic data into knowledge that can be used to stratify patients into treatment groups based on predicted clinical response. Although clinical trials remain the only way to truly measure drug toxicities and effectiveness, as a scientific community we lack the resources to clinically assess all drugs presently under development. Therefore, an effective preclinical model system that enables prediction of anticancer drug response could significantly speed the broader adoption of personalized medicine. RESULTS: Three large-scale pharmacogenomic studies have screened anticancer compounds in greater than 1000 distinct human cancer cell lines. We combined these datasets to generate and validate multi-omic predictors of drug response. We compared drug response signatures built using a penalized linear regression model and two non-linear machine learning techniques, random forest and support vector machine. The precision and robustness of each drug response signature was assessed using cross-validation across three independent datasets. Fifteen drugs were common among the datasets. We validated prediction signatures for eleven out of fifteen tested drugs (17-AAG, AZD0530, AZD6244, Erlotinib, Lapatinib, Nultin-3, Paclitaxel, PD0325901, PD0332991, PF02341066, and PLX4720). CONCLUSIONS: Multi-omic predictors of drug response can be generated and validated for many drugs. Specifically, the random forest algorithm generated more precise and robust prediction signatures when compared to support vector machines and the more commonly used elastic net regression. The resulting drug response signatures can be used to stratify patients into treatment groups based on their individual tumor biology, with two major benefits: speeding the process of bringing preclinical drugs to market, and the repurposing and repositioning of existing anticancer therapies.


Assuntos
Antineoplásicos/farmacologia , Biologia Computacional , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Algoritmos , Animais , Linhagem Celular Tumoral , Conjuntos de Dados como Assunto , Humanos , Modelos Biológicos , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA