Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 84(8): 1406-1421.e8, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38490199

RESUMO

Enhancers bind transcription factors, chromatin regulators, and non-coding transcripts to modulate the expression of target genes. Here, we report 3D genome structures of single mouse ES cells as they are induced to exit pluripotency and transition through a formative stage prior to undergoing neuroectodermal differentiation. We find that there is a remarkable reorganization of 3D genome structure where inter-chromosomal intermingling increases dramatically in the formative state. This intermingling is associated with the formation of a large number of multiway hubs that bring together enhancers and promoters with similar chromatin states from typically 5-8 distant chromosomal sites that are often separated by many Mb from each other. In the formative state, genes important for pluripotency exit establish contacts with emerging enhancers within these multiway hubs, suggesting that the structural changes we have observed may play an important role in modulating transcription and establishing new cell identities.


Assuntos
Células-Tronco Embrionárias Murinas , Sequências Reguladoras de Ácido Nucleico , Camundongos , Animais , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina/genética , Cromatina/metabolismo , Elementos Facilitadores Genéticos
2.
Sci Adv ; 10(13): eadl0608, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552021

RESUMO

The Golgi-localized golgins golgin-97 and golgin-245 capture transport vesicles arriving from endosomes via the protein TBC1D23. The amino-terminal domain of TBC1D23 binds to the golgins, and the carboxyl-terminal domain of TBC1D23 captures the vesicles, but how it recognizes specific vesicles was unclear. A search for binding partners of the carboxyl-terminal domain unexpectedly revealed direct binding to carboxypeptidase D and syntaxin-16, known cargo proteins of the captured vesicles. Binding is via a threonine-leucine-tyrosine (TLY) sequence present in both proteins next to an acidic cluster. A crystal structure reveals how this acidic TLY motif binds to TBC1D23. An acidic TLY motif is also present in the tails of other endosome-to-Golgi cargo, and these also bind TBC1D23. Structure-guided mutations in the carboxyl-terminal domain that disrupt motif binding in vitro also block vesicle capture in vivo. Thus, TBC1D23 attached to golgin-97 and golgin-245 captures vesicles by a previously undescribed mechanism: the recognition of a motif shared by cargo proteins carried by the vesicle.


Assuntos
Complexo de Golgi , Proteínas de Membrana , Proteínas da Matriz do Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Complexo de Golgi/metabolismo , Transporte Biológico , Endossomos/metabolismo , Ligação Proteica
3.
Front Bioinform ; 3: 1284484, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148761

RESUMO

Detailed understanding of the 3D structure of chromatin is a key ingredient to investigate a variety of processes inside the cell. Since direct methods to experimentally ascertain these structures lack the desired spatial fidelity, computational inference methods based on single cell Hi-C data have gained significant interest. Here, we develop a progressive simulation protocol to iteratively improve the resolution of predicted interphase structures by maximum-likelihood association of ambiguous Hi-C contacts using lower-resolution predictions. Compared to state-of-the-art methods, our procedure is not limited to haploid cell data and allows us to reach a resolution of up to 5,000 base pairs per bead. High resolution chromatin models grant access to a multitude of structural phenomena. Exemplarily, we verify the formation of chromosome territories and holes near aggregated chromocenters as well as the inversion of the CpG content for rod photoreceptor cells.

4.
PLoS Biol ; 21(8): e3002222, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552676

RESUMO

The human genome encodes approximately 20,000 proteins, many still uncharacterised. It has become clear that scientific research tends to focus on well-studied proteins, leading to a concern that poorly understood genes are unjustifiably neglected. To address this, we have developed a publicly available and customisable "Unknome database" that ranks proteins based on how little is known about them. We applied RNA interference (RNAi) in Drosophila to 260 unknown genes that are conserved between flies and humans. Knockdown of some genes resulted in loss of viability, and functional screening of the rest revealed hits for fertility, development, locomotion, protein quality control, and resilience to stress. CRISPR/Cas9 gene disruption validated a component of Notch signalling and 2 genes contributing to male fertility. Our work illustrates the importance of poorly understood genes, provides a resource to accelerate future research, and highlights a need to support database curation to ensure that misannotation does not erode our awareness of our own ignorance.


Assuntos
Drosophila , Fertilidade , Animais , Masculino , Humanos , Drosophila/genética , Interferência de RNA , Fertilidade/genética
5.
Nature ; 616(7957): 581-589, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37020023

RESUMO

General approaches for designing sequence-specific peptide-binding proteins would have wide utility in proteomics and synthetic biology. However, designing peptide-binding proteins is challenging, as most peptides do not have defined structures in isolation, and hydrogen bonds must be made to the buried polar groups in the peptide backbone1-3. Here, inspired by natural and re-engineered protein-peptide systems4-11, we set out to design proteins made out of repeating units that bind peptides with repeating sequences, with a one-to-one correspondence between the repeat units of the protein and those of the peptide. We use geometric hashing to identify protein backbones and peptide-docking arrangements that are compatible with bidentate hydrogen bonds between the side chains of the protein and the peptide backbone12. The remainder of the protein sequence is then optimized for folding and peptide binding. We design repeat proteins to bind to six different tripeptide-repeat sequences in polyproline II conformations. The proteins are hyperstable and bind to four to six tandem repeats of their tripeptide targets with nanomolar to picomolar affinities in vitro and in living cells. Crystal structures reveal repeating interactions between protein and peptide interactions as designed, including ladders of hydrogen bonds from protein side chains to peptide backbones. By redesigning the binding interfaces of individual repeat units, specificity can be achieved for non-repeating peptide sequences and for disordered regions of native proteins.


Assuntos
Peptídeos , Engenharia de Proteínas , Proteínas , Sequência de Aminoácidos , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Proteínas/química , Proteínas/metabolismo , Engenharia de Proteínas/métodos , Ligação de Hidrogênio , Ligação Proteica , Dobramento de Proteína , Conformação Proteica
6.
Development ; 150(7)2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36897564

RESUMO

During morphogenesis, large-scale changes of tissue primordia are coordinated across an embryo. In Drosophila, several tissue primordia and embryonic regions are bordered or encircled by supracellular actomyosin cables, junctional actomyosin enrichments networked between many neighbouring cells. We show that the single Drosophila Alp/Enigma-family protein Zasp52, which is most prominently found in Z-discs of muscles, is a component of many supracellular actomyosin structures during embryogenesis, including the ventral midline and the boundary of the salivary gland placode. We reveal that Zasp52 contains within its central coiled-coil region a type of actin-binding motif usually found in CapZbeta proteins, and this domain displays actin-binding activity. Using endogenously-tagged lines, we identify that Zasp52 interacts with junctional components, including APC2, Polychaetoid and Sidekick, and actomyosin regulators. Analysis of zasp52 mutant embryos reveals that the severity of the embryonic defects observed scales inversely with the amount of functional protein left. Large tissue deformations occur where actomyosin cables are found during embryogenesis, and in vivo and in silico analyses suggest a model whereby supracellular Zasp52-containing cables aid to insulate morphogenetic changes from one another.


Assuntos
Actomiosina , Proteínas de Drosophila , Animais , Actomiosina/metabolismo , Actinas/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Sarcômeros/metabolismo , Morfogênese/genética
7.
J Cell Biol ; 220(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34473204

RESUMO

The fidelity of Golgi glycosylation is, in part, ensured by compartmentalization of enzymes within the stack. The COPI adaptor GOLPH3 has been shown to interact with the cytoplasmic tails of a subset of Golgi enzymes and direct their retention. However, other mechanisms of retention, and other roles for GOLPH3, have been proposed, and a comprehensive characterization of the clientele of GOLPH3 and its paralogue GOLPH3L is lacking. GOLPH3's role is of particular interest as it is frequently amplified in several solid tumor types. Here, we apply two orthogonal proteomic methods to identify GOLPH3+3L clients and find that they act in diverse glycosylation pathways or have other roles in the Golgi. Binding studies, bioinformatics, and a Golgi retention assay show that GOLPH3+3L bind the cytoplasmic tails of their clients through membrane-proximal positively charged residues. Furthermore, deletion of GOLPH3+3L causes multiple defects in glycosylation. Thus, GOLPH3+3L are major COPI adaptors that impinge on most, if not all, of the glycosylation pathways of the Golgi.


Assuntos
Complexo I de Proteína do Envoltório/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Fosfoproteínas/metabolismo , Vesículas Transportadoras/metabolismo , Transporte Biológico , Células Cultivadas , Células HEK293 , Humanos
8.
Cell Host Microbe ; 28(5): 752-766.e9, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33053376

RESUMO

Apicomplexan parasites cause major human disease and food insecurity. They owe their considerable success to highly specialized cell compartments and structures. These adaptations drive their recognition, nondestructive penetration, and elaborate reengineering of the host's cells to promote their growth, dissemination, and the countering of host defenses. The evolution of unique apicomplexan cellular compartments is concomitant with vast proteomic novelty. Consequently, half of apicomplexan proteins are unique and uncharacterized. Here, we determine the steady-state subcellular location of thousands of proteins simultaneously within the globally prevalent apicomplexan parasite Toxoplasma gondii. This provides unprecedented comprehensive molecular definition of these unicellular eukaryotes and their specialized compartments, and these data reveal the spatial organizations of protein expression and function, adaptation to hosts, and the underlying evolutionary trajectories of these pathogens.


Assuntos
Proteoma , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Apicomplexa , Evolução Biológica , Epitopos , Interações Hospedeiro-Patógeno , Humanos , Proteômica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Toxoplasma/genética
9.
Dev Cell ; 52(3): 364-378.e7, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-31902655

RESUMO

The myosin II activator Rho-kinase (Rok) is planar polarized at the tissue boundary of the Drosophila embryonic salivary gland placode through a negative regulation by the apical polarity protein Crumbs that is anisotropically localized at the boundary. However, in inner cells of the placode, both Crumbs and Rok are isotropically enriched at junctions. We propose that modulation of Rok membrane residence time by Crumbs' downstream effectors can reconcile both behaviors. Using FRAP combined with in silico simulations, we find that the lower membrane dissociation rate (koff) of Rok at the tissue boundary with low Crumbs explains this boundary-specific effect. The S/T kinase Pak1, recruited by Crumbs and Cdc42, negatively affects Rok membrane association in vivo and in vitro can phosphorylate Rok near the pleckstrin homology (PH) domain that mediates membrane association. These data reveal an important mechanism of the modulation of Rok membrane residence time via affecting the koff that may be widely employed during tissue morphogenesis.


Assuntos
Membrana Celular/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Membrana/metabolismo , Quinases Ativadas por p21/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Proteínas de Ligação ao GTP/genética , Masculino , Proteínas de Membrana/genética , Fosforilação , Quinases Ativadas por p21/genética , Quinases Associadas a rho/genética
10.
Plant Physiol ; 181(4): 1721-1738, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31578229

RESUMO

Cyanobacteria are complex prokaryotes, incorporating a Gram-negative cell wall and internal thylakoid membranes (TMs). However, localization of proteins within cyanobacterial cells is poorly understood. Using subcellular fractionation and quantitative proteomics, we produced an extensive subcellular proteome map of an entire cyanobacterial cell, identifying ∼67% of proteins in Synechocystis sp. PCC 6803, ∼1000 more than previous studies. Assigned to six specific subcellular regions were 1,712 proteins. Proteins involved in energy conversion localized to TMs. The majority of transporters, with the exception of a TM-localized copper importer, resided in the plasma membrane (PM). Most metabolic enzymes were soluble, although numerous pathways terminated in the TM (notably those involved in peptidoglycan monomer, NADP+, heme, lipid, and carotenoid biosynthesis) or PM (specifically, those catalyzing lipopolysaccharide, molybdopterin, FAD, and phylloquinol biosynthesis). We also identified the proteins involved in the TM and PM electron transport chains. The majority of ribosomal proteins and enzymes synthesizing the storage compound polyhydroxybuyrate formed distinct clusters within the data, suggesting similar subcellular distributions to one another, as expected for proteins operating within multicomponent structures. Moreover, heterogeneity within membrane regions was observed, indicating further cellular complexity. Cyanobacterial TM protein localization was conserved in Arabidopsis (Arabidopsis thaliana) chloroplasts, suggesting similar proteome organization in more developed photosynthetic organisms. Successful application of this technique in Synechocystis suggests it could be applied to mapping the proteomes of other cyanobacteria and single-celled organisms. The organization of the cyanobacterial cell revealed here substantially aids our understanding of these environmentally and biotechnologically important organisms.


Assuntos
Compartimento Celular , Proteoma/metabolismo , Proteômica , Synechocystis/citologia , Synechocystis/metabolismo , Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Fracionamento Celular , Membrana Celular/metabolismo , Parede Celular/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Redes e Vias Metabólicas , Análise de Componente Principal , Subunidades Ribossômicas/metabolismo , Synechocystis/ultraestrutura
11.
Plant Cell ; 31(9): 2010-2034, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31266899

RESUMO

The order of enzymatic activity across Golgi cisternae is essential for complex molecule biosynthesis. However, an inability to separate Golgi cisternae has meant that the cisternal distribution of most resident proteins, and their underlying localization mechanisms, are unknown. Here, we exploit differences in surface charge of intact cisternae to perform separation of early to late Golgi subcompartments. We determine protein and glycan abundance profiles across the Golgi; over 390 resident proteins are identified, including 136 new additions, with over 180 cisternal assignments. These assignments provide a means to better understand the functional roles of Golgi proteins and how they operate sequentially. Protein and glycan distributions are validated in vivo using high-resolution microscopy. Results reveal distinct functional compartmentalization among resident Golgi proteins. Analysis of transmembrane proteins shows several sequence-based characteristics relating to pI, hydrophobicity, Ser abundance, and Phe bilayer asymmetry that change across the Golgi. Overall, our results suggest that a continuum of transmembrane features, rather than discrete rules, guide proteins to earlier or later locations within the Golgi stack.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Complexo de Golgi/ultraestrutura , Interações Hidrofóbicas e Hidrofílicas , Membranas Intracelulares , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Proteoma
12.
Proc Natl Acad Sci U S A ; 116(6): 2187-2192, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30670662

RESUMO

Sex promotes the recombination and reassortment of genetic material and is prevalent across eukaryotes, although our knowledge of the molecular details of sexual inheritance is scant in several major lineages. In social amoebae, sex involves a promiscuous mixing of cytoplasm before zygotes consume the majority of cells, but for technical reasons, sexual progeny have been difficult to obtain and study. We report here genome-wide characterization of meiotic progeny in Dictyostelium discoideum We find that recombination occurs at high frequency in pairwise crosses between all three mating types, despite the absence of the Spo11 enzyme that is normally required to initiate crossover formation. Fusions of more than two gametes to form transient syncytia lead to frequent triparental inheritance, with haploid meiotic progeny bearing recombined nuclear haplotypes from two parents and the mitochondrial genome from a third. Cells that do not contribute genetically to the Dictyostelium zygote nucleus thereby have a stake in the next haploid generation. D. discoideum mitochondrial genomes are polymorphic, and our findings raise the possibility that some of this variation might be a result of sexual selection on genes that can promote the spread of individual organelle genomes during sex. This kind of self-interested mitochondrial behavior may have had important consequences during eukaryogenesis and the initial evolution of sex.

13.
Genome Biol ; 19(1): 174, 2018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30359306

RESUMO

BACKGROUND: Transcription factor (TF) binding to regulatory DNA sites is a key determinant of cell identity within multi-cellular organisms and has been studied extensively in relation to site affinity and chromatin modifications. There has been a strong focus on the inference of TF-gene regulatory networks and TF-TF physical interaction networks. Here, we present a third type of TF network, the spatial network of co-localized TF binding sites within the three-dimensional genome. RESULTS: Using published canonical Hi-C data and single-cell genome structures, we assess the spatial proximity of a genome-wide array of potential TF-TF co-localizations in human and mouse cell lines. For individual TFs, the abundance of occupied binding sites shows a positive correspondence with their clustering in three dimensions, and this is especially apparent for weak TF binding sites and at enhancer regions. An analysis between different TF proteins identifies significantly proximal pairs, which are enriched in reported physical interactions. Furthermore, clustering of different TFs based on proximity enrichment identifies two partially segregated co-localization sub-networks, involving different TFs in different cell types. Using data from both human lymphoblastoid cells and mouse embryonic stem cells, we find that these sub-networks are enriched within, but not exclusive to, different chromosome sub-compartments that have been identified previously in Hi-C data. CONCLUSIONS: This suggests that the association of TFs within spatial networks is closely coupled to gene regulatory networks. This applies to both differentiated and undifferentiated cells and is a potential causal link between lineage-specific TF binding and chromosome sub-compartment segregation.


Assuntos
Cromatina/metabolismo , Redes Reguladoras de Genes , Mamíferos/genética , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Genes Reporter , Genoma , Humanos , Linfócitos/metabolismo , Camundongos , Especificidade de Órgãos/genética
14.
Nat Protoc ; 13(5): 1034-1061, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29674753

RESUMO

Fluorescence imaging and chromosome conformation capture assays such as Hi-C are key tools for studying genome organization. However, traditionally, they have been carried out independently, making integration of the two types of data difficult to perform. By trapping individual cell nuclei inside a well of a 384-well glass-bottom plate with an agarose pad, we have established a protocol that allows both fluorescence imaging and Hi-C processing to be carried out on the same single cell. The protocol identifies 30,000-100,000 chromosome contacts per single haploid genome in parallel with fluorescence images. Contacts can be used to calculate intact genome structures to better than 100-kb resolution, which can then be directly compared with the images. Preparation of 20 single-cell Hi-C libraries using this protocol takes 5 d of bench work by researchers experienced in molecular biology techniques. Image acquisition and analysis require basic understanding of fluorescence microscopy, and some bioinformatics knowledge is required to run the sequence-processing tools described here.


Assuntos
Cromatina/ultraestrutura , Cromossomos/ultraestrutura , Biologia Molecular/métodos , Conformação Molecular , Células-Tronco Embrionárias Murinas , Imagem Óptica/métodos , Animais , Células Cultivadas , Imageamento Tridimensional/métodos , Camundongos , Análise de Célula Única/métodos
15.
EMBO J ; 37(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29496740

RESUMO

Protein aggregation is a hallmark of diverse neurodegenerative diseases. Multiple lines of evidence have revealed that protein aggregates can penetrate inside cells and spread like prions. How such aggregates enter cells remains elusive. Through a focused siRNA screen targeting genes involved in membrane trafficking, we discovered that mutant SOD1 aggregates, like viruses, exploit cofilin-1 to remodel cortical actin and enter cells. Upstream of cofilin-1, signalling from the RHO GTPase and the ROCK1 and LIMK1 kinases controls cofilin-1 activity to remodel actin and modulate aggregate entry. In the spinal cord of symptomatic SOD1G93A transgenic mice, cofilin-1 phosphorylation is increased and actin dynamics altered. Importantly, the RHO to cofilin-1 signalling pathway also modulates entry of tau and α-synuclein aggregates. Our results identify a common host cell signalling pathway that diverse protein aggregates exploit to remodel actin and enter cells.


Assuntos
Cofilina 1/metabolismo , Agregados Proteicos , Proteínas rho de Ligação ao GTP/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Quinases Lim/metabolismo , Camundongos Transgênicos , RNA Interferente Pequeno/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Quinases Associadas a rho/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
16.
Nucleus ; 9(1): 190-201, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29431585

RESUMO

Single-cell chromosome conformation capture approaches are revealing the extent of cell-to-cell variability in the organization and packaging of genomes. These single-cell methods, unlike their multi-cell counterparts, allow straightforward computation of realistic chromosome conformations that may be compared and combined with other, independent, techniques to study 3D structure. Here we discuss how single-cell Hi-C and subsequent 3D genome structure determination allows comparison with data from microscopy. We then carry out a systematic evaluation of recently published single-cell Hi-C datasets to establish a computational approach for the evaluation of single-cell Hi-C protocols. We show that the calculation of genome structures provides a useful tool for assessing the quality of single-cell Hi-C data because it requires a self-consistent network of interactions, relating to the underlying 3D conformation, with few errors, as well as sufficient longer-range cis- and trans-chromosomal contacts.


Assuntos
Cromossomos/genética , Imageamento Tridimensional , Análise de Célula Única , Humanos , Modelos Moleculares
17.
Plant J ; 92(6): 1202-1217, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29024340

RESUMO

Measuring changes in protein or organelle abundance in the cell is an essential, but challenging aspect of cell biology. Frequently-used methods for determining organelle abundance typically rely on detection of a very few marker proteins, so are unsatisfactory. In silico estimates of protein abundances from publicly available protein spectra can provide useful standard abundance values but contain only data from tissue proteomes, and are not coupled to organelle localization data. A new protein abundance score, the normalized protein abundance scale (NPAS), expands on the number of scored proteins and the scoring accuracy of lower-abundance proteins in Arabidopsis. NPAS was combined with subcellular protein localization data, facilitating quantitative estimations of organelle abundance during routine experimental procedures. A suite of targeted proteomics markers for subcellular compartment markers was developed, enabling independent verification of in silico estimates for relative organelle abundance. Estimation of relative organelle abundance was found to be reproducible and consistent over a range of tissues and growth conditions. In silico abundance estimations and localization data have been combined into an online tool, multiple marker abundance profiling, available in the SUBA4 toolbox (http://suba.live).


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteoma , Proteômica , Biomarcadores/metabolismo , Organelas/metabolismo , Transporte Proteico
18.
Nature ; 544(7648): 59-64, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28289288

RESUMO

The folding of genomic DNA from the beads-on-a-string-like structure of nucleosomes into higher-order assemblies is crucially linked to nuclear processes. Here we calculate 3D structures of entire mammalian genomes using data from a new chromosome conformation capture procedure that allows us to first image and then process single cells. The technique enables genome folding to be examined at a scale of less than 100 kb, and chromosome structures to be validated. The structures of individual topological-associated domains and loops vary substantially from cell to cell. By contrast, A and B compartments, lamina-associated domains and active enhancers and promoters are organized in a consistent way on a genome-wide basis in every cell, suggesting that they could drive chromosome and genome folding. By studying genes regulated by pluripotency factor and nucleosome remodelling deacetylase (NuRD), we illustrate how the determination of single-cell genome structure provides a new approach for investigating biological processes.


Assuntos
Montagem e Desmontagem da Cromatina , Genoma , Imagem Molecular/métodos , Nucleossomos/química , Análise de Célula Única/métodos , Animais , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos de Mamíferos/química , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , Elementos Facilitadores Genéticos , Fase G1 , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genoma/genética , Haploidia , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Camundongos , Modelos Moleculares , Conformação Molecular , Imagem Molecular/normas , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Reprodutibilidade dos Testes , Análise de Célula Única/normas , Coesinas
19.
Polymers (Basel) ; 9(8)2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30971010

RESUMO

Recent developments have for the first time allowed the determination of three-dimensional structures of individual chromosomes and genomes in nuclei of single haploid mouse embryonic stem (ES) cells based on Hi⁻C chromosome conformation contact data. Although these first structures have a relatively low resolution, they provide the first experimental data that can be used to study chromosome and intact genome folding. Here we further analyze these structures and provide the first evidence that G1 phase chromosomes are knotted, consistent with the fact that plots of contact probability vs sequence separation show a power law dependence that is intermediate between that of a fractal globule and an equilibrium structure.

20.
Plant Physiol ; 172(3): 1928-1940, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27707888

RESUMO

Cyanobacteria are intricately organized, incorporating an array of internal thylakoid membranes, the site of photosynthesis, into cells no larger than other bacteria. They also synthesize C15-C19 alkanes and alkenes, which results in substantial production of hydrocarbons in the environment. All sequenced cyanobacteria encode hydrocarbon biosynthesis pathways, suggesting an important, undefined physiological role for these compounds. Here, we demonstrate that hydrocarbon-deficient mutants of Synechococcus sp. PCC 7002 and Synechocystis sp. PCC 6803 exhibit significant phenotypic differences from wild type, including enlarged cell size, reduced growth, and increased division defects. Photosynthetic rates were similar between strains, although a minor reduction in energy transfer between the soluble light harvesting phycobilisome complex and membrane-bound photosystems was observed. Hydrocarbons were shown to accumulate in thylakoid and cytoplasmic membranes. Modeling of membranes suggests these compounds aggregate in the center of the lipid bilayer, potentially promoting membrane flexibility and facilitating curvature. In vivo measurements confirmed that Synechococcus sp. PCC 7002 mutants lacking hydrocarbons exhibit reduced thylakoid membrane curvature compared to wild type. We propose that hydrocarbons may have a role in inducing the flexibility in membranes required for optimal cell division, size, and growth, and efficient association of soluble and membrane bound proteins. The recent identification of C15-C17 alkanes and alkenes in microalgal species suggests hydrocarbons may serve a similar function in a broad range of photosynthetic organisms.


Assuntos
Divisão Celular/efeitos dos fármacos , Hidrocarbonetos/farmacologia , Synechocystis/citologia , Synechocystis/crescimento & desenvolvimento , Vias Biossintéticas/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Bicamadas Lipídicas/metabolismo , Mutação/genética , Fotossíntese/efeitos dos fármacos , Synechocystis/efeitos dos fármacos , Synechocystis/metabolismo , Tilacoides/efeitos dos fármacos , Tilacoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA