Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 921: 170750, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336073

RESUMO

Anthropogenic disturbances, including extraction of natural resources and development of alternative energy, are reducing and fragmenting habitat for wildlife across the globe. Effects of those disturbances have been explored by studying populations that migrate through oil and gas fields or alternative energy facilities. Extraction of minerals, including precious metals and lithium, is increasing rapidly in remote areas, which results in dramatically altered landscapes in areas of resident populations of wildlife. Our goal was to examine how a resident population of American pronghorn (Antilocapra americana) in the Great Basin ecosystem selected resources near a large-scale disturbance year around. We investigated how individuals selected resources around a large, open-pit gold mine. We classified levels of disturbance associated with the mine, and used a random forest model to select ecological covariates associated with habitat selection by pronghorn. We used resource selection functions to examine how disturbances affected habitat selection by pronghorn both annually and seasonally. Pronghorn strongly avoided areas of high disturbance, which included open pits, heap leach fields, rock disposal areas, and a tram. Pronghorn selected areas near roads, although selection was strongest about 2 km away. We observed relatively broad variation among individuals in selection of resources, and how they responded to the mine. The Great Basin is a mineral-rich area that continues to be exploited for natural resources, especially minerals. Sagebrush-dependent species, including pronghorn, that rely on this critical habitat were directly affected by that transformation of the landscape, which is likely to increase with expansion of the mine. As extraction of minerals from remote landscapes around the world continues to fragment habitats for wildlife, increasing our understanding of impacts of those changes on behaviors of wildlife before populations decline, may assist in the mitigation and minimization of negative impacts on mineral-rich landscapes and on wildlife populations.


Assuntos
Ecossistema , Ouro , Humanos , Animais , Conservação dos Recursos Naturais/métodos , Animais Selvagens , Ruminantes , Minerais
3.
Mov Ecol ; 11(1): 20, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020241

RESUMO

Animals select habitats based on food, water, space, and cover. Each of those components are essential to the ability of an individual to survive and reproduce in a particular habitat. Selection of resources is linked to reproductive fitness and individuals likely vary in how they select resources relative to their reproductive state: during pregnancy, while provisioning young when nutritional needs of the mother are high, but offspring are vulnerable to predation, or if they lose young to mortality. We investigated the effects of reproductive state on selection of resources by maternal female desert bighorn sheep (Ovis canadensis nelsoni) by comparing selection during the last trimester of gestation, following parturition when females were provisioning dependent young, and if the female lost an offspring. We captured, and recaptured each year, 32 female bighorn sheep at Lone Mountain, Nevada, during 2016-2018. Captured females were fit with GPS collars and those that were pregnant received vaginal implant transmitters. We used a Bayesian approach to estimate differences in selection between females provisioning and not provisioning offspring, as well as the length of time it took for females with offspring to return levels of selection similar to that observed prior to parturition. Females that were not provisioning offspring selected areas with higher risk of predation, but greater nutritional resources than those that were provisioning dependent young. When females were provisioning young immediately following parturition, females selected areas that were safe from predators, but had lower nutritional resources. Females displayed varying rates of return to selection strategies associated with access to nutritional resources as young grew and became more agile and less dependent on mothers. We observed clear and substantial shifts in selection of resources associated with reproductive state, and females exhibited tradeoffs in favor of areas that were safer from predators when provisioning dependent young despite loss of nutritional resources to support lactation. As young grew and became less vulnerable to predators, females returned to levels of selection that provided access to nutritional resources to restore somatic reserves lost during lactation.

4.
R Soc Open Sci ; 10(2): 220390, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36756067

RESUMO

Animal movements among habitat patches or populations are important for maintaining long-term genetic and demographic viability, but connectivity may also facilitate disease spread and persistence. Understanding factors that influence animal movements is critical to understanding potential transmission risk and persistence of communicable disease in spatially structured systems. We evaluated effects of sex, age and Mycoplasma ovipneumoniae infection status at capture on intermountain movements and seasonal movement rates observed in desert bighorn sheep (Ovis canadensis nelsoni) using global positioning system collar data from 135 individuals (27 males, 108 females) in 14 populations between 2013 and 2018, following a pneumonia outbreak linked to the pathogen M. ovipneumoniae in the Mojave Desert, California, USA. Based on logistic regression analysis, intermountain movements were influenced by sex, age and most notably, infection status at capture: males, older animals and uninfected individuals were most likely to make such movements. Based on multiple linear regression analysis, females that tested positive for M. ovipneumoniae at capture also had lower mean daily movement rates that were further influenced by season. Our study provides empirical evidence of a pathogenic infection decreasing an individual's future mobility, presumably limiting that pathogen's ability to spread, and ultimately influencing transmission risk within a spatially structured system.

5.
Ecol Evol ; 12(10): e9389, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36254298

RESUMO

The behavioral mechanisms by which predators encounter prey are poorly resolved. In particular, the extent to which predators engage in active search for prey versus incidentally encountering them has not been well studied in many systems and particularly not for neonate prey during the birth pulse. Parturition of many large herbivores occurs during a short and predictable temporal window in which young are highly vulnerable to predation. Our study aims to determine how a suite of carnivores responds to the seasonal pulse of newborn ungulates using contemporaneous global positioning system (GPS) locations of four species of predators and two species of prey. We used step-selection functions to assess whether coyotes, cougars, black bears, and bobcats encountered parturient adult female ungulates more often than expected by chance in a low-density population of mule deer and a high-density population of elk. We then assessed whether the carnivore species that encountered parturient prey more often than expected by chance did so by shifting their habitat use toward areas with a high probability of encountering neonates. None of the four carnivore species encountered GPS-collared parturient mule deer more often than expected by chance. By contrast, we determined that cougar and male bear movements positioned them in the proximity of GPS-collared parturient elk more often than expected by chance which may provide evidence of searching behavior. Although both male bears and cougars exhibited behavior consistent with active search for neonates, only male bears used elk parturition habitat in a way that dynamically tracked the phenology of the elk birth pulse suggesting that maximizing encounters with juvenile elk was a motivation when selecting resources. Our results suggest that there is high interspecific and intersexual variability in foraging strategies among large mammalian predators and their prey.

6.
J Mammal ; 101(5): 1244-1256, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33335453

RESUMO

Bighorn sheep (Ovis canadensis) can live in extremely harsh environments and subsist on submaintenance diets for much of the year. Under these conditions, energy stored as body fat serves as an essential reserve for supplementing dietary intake to meet metabolic demands of survival and reproduction. We developed equations to predict ingesta-free body fat in bighorn sheep using ultrasonography and condition scores in vivo and carcass measurements postmortem. We then used in vivo equations to investigate the relationships between body fat, pregnancy, overwinter survival, and population growth in free-ranging bighorn sheep in California and Nevada. Among 11 subpopulations that included alpine winter residents and migrants, mean ingesta-free body fat of lactating adult females during autumn ranged between 8.8% and 15.0%; mean body fat for nonlactating females ranged from 16.4% to 20.9%. In adult females, ingesta-free body fat > 7.7% during January (early in the second trimester) corresponded with a > 90% probability of pregnancy and ingesta-free body fat > 13.5% during autumn yielded a probability of overwinter survival > 90%. Mean ingesta-free body fat of lactating females in autumn was positively associated with finite rate of population increase (λ) over the subsequent year in bighorn sheep subpopulations that wintered in alpine landscapes. Bighorn sheep with ingesta-free body fat of 26% in autumn and living in alpine environments possess energy reserves sufficient to meet resting metabolism for 83 days on fat reserves alone. We demonstrated that nutritional condition can be a pervasive mechanism underlying demography in bighorn sheep and characterizes the nutritional value of their occupied ranges. Mountain sheep are capital survivors in addition to being capital breeders, and because they inhabit landscapes with extreme seasonal forage scarcity, they also can be fat reserve obligates. Quantifying nutritional condition is essential for understanding the quality of habitats, how it underpins demography, and the proximity of a population to a nutritional threshold.

7.
Ecol Evol ; 9(22): 12701-12709, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31788208

RESUMO

Population change is regulated by vital rates that are influenced by environmental conditions, demographic stochasticity, and, increasingly, anthropogenic effects. Habitat destruction and climate change threaten the future of many wildlife populations, and there are additional concerns regarding the effects of harvest rates on demographic components of harvested organisms. Further, many population managers strictly manage harvest of wild organisms to mediate population trends of these populations. The goal of our study was to decouple harvest and environmental variability in a closely monitored population of wild ducks in North America, where we experimentally regulated harvest independently of environmental variation over a period of 4 years. We used 9 years of capture-mark-recapture data to estimate breeding population size during the spring for a population of wood ducks in Nevada. We then assessed the effect of one environmental variable and harvest pressure on annual changes in the breeding population size. Climatic conditions influencing water availability were strongly positively related to population growth rates of wood ducks in our study system. In contrast, harvest regulations and harvest rates did not affect population growth rates. We suggest efforts to conserve waterfowl should focus on the effects of habitat loss in breeding areas and climate change, which will likely affect precipitation regimes in the future. We demonstrate the utility of capture-mark-recapture methods to estimate abundance of species which are difficult to survey and test the impacts of anthropogenic harvest and climate on populations. Finally, our results continue to add to the importance of experimentation in applied conservation biology, where we believe that continued experiments on nonthreatened species will be critically important as researchers attempt to understand how to quantify and mitigate direct anthropogenic impacts in a changing world.

8.
Mov Ecol ; 7: 23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31388428

RESUMO

BACKGROUND: Movement decisions made in space and time define how wildlife meet competing extrinsic and intrinsic demands to maximize fitness. Differential selection of resource patches provides one example of how to measure how animals balance conflicting demands. We hypothesized that individual spatial selection of patch types between dynamic seasons would signify flexible strategies used to minimize risk and optimize foraging efforts. METHODS: We used data collected from GPS loggers on golden-mantled ground squirrels (Callospermophilus lateralis) to model selection or avoidance of resources in two seasons of seed availability and one season in which no seeds were available. Movement decisions were measured in short-term discrete time intervals using high resolution location data. Selection or avoidance of specific resource features that entail fitness consequences were then assessed using resource selection functions. RESULTS: Seasonality of food availability, food type, and spatial distribution of food largely influenced how individuals selected resources within their home ranges. Overall, when seeds were available, individuals mediated risks of predation and loss of food by using patches closer to refuge and selected intermediate distances to the burrow. When food was not available, individuals minimized exposure to heightened risk by staying close to the burrow and avoiding riskier patch types. CONCLUSIONS: Results indicate that individuals used flexible, dynamic strategies to select habitat patches which may allow them to balance conflicting seasonal demands. Advances in GPS technology for research of small mammals provide greater insight into how prey species in high risk environments differentially use resources to minimize risk and maintain fitness.

9.
Ecol Evol ; 8(6): 3354-3366, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29607030

RESUMO

Climate models predict that shifts in temperature and precipitation patterns are likely to occur across the globe. Changing climate will likely have strong effects on arid environments as a result of increased temperatures, increasing frequency and intensity of droughts, and less consistent pulses of rainfall. Therefore, understanding the link between patterns of precipitation, temperature, and population performance of species occupying these environments will continue to increase in importance as climatic shifts occur within these natural ecosystems. We sought to evaluate how individual, maternal, population, and environmental, particularly temperature and precipitation, level factors influence population performance of a large herbivore in an arid environment. We used mule deer (Odocoileus hemionus) as a representative species and quantified juvenile survival to test hypotheses about effects of environmental factors on population performance. Precipitation events occurring in mid- to late-pregnancy (January-April) leading to spring green-up, as indexed by normalized difference in vegetation index, had the strongest positive effect on juvenile survival and recruitment. In addition, larger neonates had an increased probability of survival. Our findings indicate that timing and amount of precipitation prior to parturition have strong influences on maternal nutritional condition, which was passed on to young. These results have important implications for understanding how animal populations may benefit from timing of precipitation during spring and prior to parturition, especially in arid environments.

10.
Ecol Evol ; 8(6): 3556-3569, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29607046

RESUMO

Resource selection functions (RSFs) are tremendously valuable for ecologists and resource managers because they quantify spatial patterns in resource utilization by wildlife, thereby facilitating identification of critical habitat areas and characterizing specific habitat features that are selected or avoided. RSFs discriminate between known-use resource units (e.g., telemetry locations) and available (or randomly selected) resource units based on an array of environmental features, and in their standard form are performed using logistic regression. As generalized linear models, standard RSFs have some notable limitations, such as difficulties in accommodating nonlinear (e.g., humped or threshold) relationships and complex interactions. Increasingly, ecologists are using flexible machine-learning methods (e.g., random forests, neural networks) to overcome these limitations. Herein, we investigate the seasonal resource selection patterns of mule deer (Odocoileus hemionus) by comparing a logistic regression framework with random forest (RF), a popular machine-learning algorithm. Random forest (RF) models detected nonlinear relationships (e.g., optimal ranges for slope and elevation) and complex interactions which would have been very challenging to discover and characterize using standard model-based approaches. Compared with standard RSF models, RF models exhibited improved predictive skill, provided novel insights about resource selection patterns of mule deer, and, when projected across a relevant geographic space, manifested notable differences in predicted habitat suitability. We recommend that wildlife researchers harness the strengths of machine-learning tools like RF in addition to "classical" tools (e.g., mixed-effects logistic regression) for evaluating resource selection, especially in cases where extensive telemetry data sets are available.

11.
Front Immunol ; 9: 105, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29445376

RESUMO

Life-history theory is fundamental to understanding how animals allocate resources among survival, development, and reproduction, and among traits within these categories. Immediate trade-offs occur within a short span of time and, therefore, are more easily detected. Trade-offs, however, can also manifest across stages of the life cycle, a phenomenon known as carryover effects. We investigated trade-offs on both time scales in two populations of Dall sheep (Ovis dalli dalli) in Southcentral Alaska. Specifically, we (i) tested for glucocorticoid-mediated carryover effects from the breeding season on reproductive success and immune defenses during parturition and (ii) tested for trade-offs between immune defenses and reproduction within a season. We observed no relationship between cortisol during mating and pregnancy success; however, we found marginal support for a negative relationship between maternal cortisol and neonate birth weights. Low birth weights, resulting from high maternal cortisol, may result in low survival or low fecundity for the neonate later in life, which could result in overall population decline. We observed a negative relationship between pregnancy and bacterial killing ability, although we observed no relationship between pregnancy and haptoglobin. Study site affected bactericidal capacity and the inflammatory response, indicating the influence of external factors on immune responses, although we could not test hypotheses about the cause of those differences. This study helps advance our understanding of the plasticity and complexity of the immune system and provides insights into the how individual differences in physiology may mediate differences in fitness.


Assuntos
Hidrocortisona/sangue , Gravidez/imunologia , Reprodução/imunologia , Ovinos/fisiologia , Animais , Animais Recém-Nascidos , Feminino
12.
PLoS One ; 10(5): e0125586, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25992627

RESUMO

Natural selection favors individuals that respond with effective and appropriate immune responses to macro or microparasites. Animals living in populations close to ecological carrying capacity experience increased intraspecific competition, and as a result are often in poor nutritional condition. Nutritional condition, in turn, affects the amount of endogenous resources that are available for investment in immune function. Our objective was to understand the relationship between immune function and density dependence mediated by trade-offs between immune function, nutritional condition, and reproduction. To determine how immune function relates to density-dependent processes, we quantified bacteria killing ability, hemolytic-complement activity, and nutritional condition of North American elk (Cervus elaphus) from populations maintained at experimentally high- and low-population densities. When compared with elk from the low-density population, those from the high-density population had higher bacteria killing ability and hemolytic-complement activity despite their lower nutritional condition. Similarly, when compared with adults, yearlings had higher bacteria killing ability, higher hemolytic-complement activity, and lower nutritional condition. Pregnancy status and lactational status did not change either measure of constitutive immunity. Density-dependent processes affected both nutritional condition and investment in constitutive immune function. Although the mechanism for how density affects immunity is ambiguous, we hypothesize two possibilities: (i) individuals in higher population densities and in poorer nutritional condition invested more into constitutive immune defenses, or (ii) had higher parasite loads causing higher induced immune responses. Those explanations are not mutually exclusive, and might be synergistic, but overall our results provide stronger support for the hypothesis that animals in poorer nutritional condition invest more in constitutive immune defenses then animals in better nutritional condition. This intriguing hypothesis should be investigated further within the larger framework of the cost and benefit structure of immune responses.


Assuntos
Cervos/imunologia , Cervos/fisiologia , Fenômenos do Sistema Imunitário/imunologia , Fenômenos do Sistema Imunitário/fisiologia , Seleção Genética/fisiologia , Animais , Densidade Demográfica , Reprodução/imunologia , Reprodução/fisiologia , Seleção Genética/imunologia , Estados Unidos
13.
Ecol Evol ; 5(3): 709-21, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25691992

RESUMO

We investigated how density-dependent processes and subsequent variation in nutritional condition of individuals influenced both timing and duration of sexual segregation and selection of resources. During 1999-2001, we experimentally created two population densities of North American elk (Cervus elaphus), a high-density population at 20 elk/km(2), and a low-density population at 4 elk/km(2) to test hypotheses relative to timing and duration of sexual segregation and variation in selection of resources. We used multi-response permutation procedures to investigate patterns of sexual segregation, and resource selection functions to document differences in selection of resources by individuals in high- and low-density populations during sexual segregation and aggregation. The duration of sexual segregation was 2 months longer in the high-density population and likely was influenced by individuals in poorer nutritional condition, which corresponded with later conception and parturition, than at low density. Males and females in the high-density population overlapped in selection of resources to a greater extent than in the low-density population, probably resulting from density-dependent effects of increased intraspecific competition and lower availability of resources.

14.
Mol Ecol ; 21(23): 5689-701, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22934825

RESUMO

Natural and anthropogenic boundaries have been shown to affect population dynamics and population structure for many species with movement patterns at the landscape level. Understanding population boundaries and movement rates in the field for species that are cryptic and occur at low densities is often extremely difficult and logistically prohibitive; however genetic techniques may offer insights that have previously been unattainable. We analysed thirteen microsatellite loci for 739 mountain lions (Puma concolor) using muscle tissue samples from individuals in the Great Basin throughout Nevada and the Sierra Nevada mountain range to test the hypothesis that heterogeneous hunting pressure results in source-sink dynamics at the landscape scale. We used a combination of non-spatial and spatial model-based Bayesian clustering methods to identify genetic populations. We then used a recently developed Bayesian multilocus genotyping method to estimate asymmetrical rates of contemporary movement between those subpopulations and to identify source and sink populations. We identified two populations at the highest level of genetic structuring with a total of five subpopulations in the Great Basin of Nevada and the Sierra Nevada range. Our results suggest that source-sink dynamics occur at landscape scales for wide-ranging species, such as mountain lions, and that source populations may be those that are under relatively less hunting pressure and that occupy refugia.


Assuntos
Genética Populacional , Repetições de Microssatélites , Dinâmica Populacional , Puma/genética , Animais , Teorema de Bayes , California , Análise por Conglomerados , Ecossistema , Modelos Biológicos , Nevada
15.
Vector Borne Zoonotic Dis ; 12(2): 99-105, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21995265

RESUMO

Surveillance of mule deer (Odocoileus hemionus, Rafinesque, 1917) populations for tick-borne diseases has helped define the distribution of these pathogens and their subsequent risk of transmission to humans and domestic animals. We surveyed three mule deer herds across the state of Nevada for infection with relapsing fever Borrelia spp. spirochetes. Bacterial prevalence varied by the county where deer were sampled but Borrelia spirochetes were detected in 7.7% of all deer sampled. Infected deer were identified in every location from which mule deer samples were obtained. Sequencing of the Borrelia intergenic spacer gene (IGS) revealed that one individual was infected with Borrelia coriaceae and all others were infected with Borrelia hermsii. The vector of B. hermsii, Ornithodoros hermsi (Acari: Argasidae, Wheeler, Herms, and Meyer, 1935), feeds primarily on wild rodents and has not been identified infesting deer. Additionally, Ornithodoros coriaceus (Acari: Argasidae, Koch, 1844), which readily feeds on deer and is frequently infected with B. coriaceae, has not been shown to be a competent vector for B. hermsii. Our data represent the first sylvatic evidence of B. hermsii infection in mule deer. Additionally, our data provide evidence that infection with relapsing fever spirochetes in Nevada is wide ranging in the state's deer populations.


Assuntos
Borrelia/isolamento & purificação , Cervos/microbiologia , Animais , Vetores Aracnídeos/microbiologia , Borrelia/genética , Bases de Dados de Ácidos Nucleicos , Cervos/sangue , Reservatórios de Doenças/microbiologia , Vetores de Doenças , Humanos , Nevada , Reação em Cadeia da Polimerase , Prevalência , Febre Recorrente/microbiologia , Febre Recorrente/transmissão , Spirochaetales , Estados Unidos , Zoonoses/microbiologia
16.
Oecologia ; 161(2): 303-12, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19484268

RESUMO

Large, herbivorous mammals have profound effects on ecosystem structure and function and often act as keystone species in ecosystems they inhabit. Density-dependent processes associated with population structure of large mammals may interact with ecosystem functioning to increase or decrease biodiversity, depending on the relationship of herbivore populations relative to the carrying capacity (K) of the ecosystem. We tested for indirect effects of population density of large herbivores on plant species richness and diversity in a montane ecosystem, where increased net aboveground primary productivity (NAPP) in response to low levels of herbivory has been reported. We documented a positive, linear relationship between plant-species diversity and richness with NAPP. Structural equation modeling revealed significant indirect relationships between population density of herbivores, NAPP, and species diversity. We observed an indirect effect of density-dependent processes in large, herbivorous mammals and species diversity of plants through changes in NAPP in this montane ecosystem. Changes in species diversity of plants in response to herbivory may be more indirect in ecosystems with long histories of herbivory. Those subtle or indirect effects of herbivory may have strong effects on ecosystem functioning, but may be overlooked in plant communities that are relatively resilient to herbivory.


Assuntos
Biodiversidade , Cervos/fisiologia , Ecossistema , Desenvolvimento Vegetal , Densidade Demográfica , Animais , Biomassa , Modelos Lineares , América do Norte , Oregon , Especificidade da Espécie
17.
Oecologia ; 143(1): 85-93, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15586292

RESUMO

Density dependence plays a key role in life-history characteristics and population ecology of large, herbivorous mammals. We designed a manipulative experiment to test hypotheses relating effects of density-dependent mechanisms on physical condition and fecundity of North American elk (Cervus elaphus) by creating populations at low and high density. We hypothesized that if density-dependent effects were manifested principally through intraspecific competition, body condition and fecundity of females would be lower in an area of high population density than in a low-density area. Thus, we collected data on physical condition and rates of pregnancy in each experimental population. Our manipulative experiment indicated that density-dependent feedbacks affected physical condition and reproduction of adult female elk. Age-specific pregnancy rates were lower in the high-density area, although there were no differences in pregnancy of yearlings or in age at peak reproduction between areas. Age-specific rates of pregnancy began to diverge at 2 years of age between the two populations and peaked at 6 years old. Pregnancy rates were most affected by body condition and mass, although successful reproduction the previous year also reduced pregnancy rates during the current year. Our results indicated that while holding effects of winter constant, density-dependent mechanisms had a much greater effect on physical condition and fecundity than density-independent factors (e.g., precipitation and temperature). Moreover, our results demonstrated effects of differing nutrition resulting from population density during summer on body condition and reproduction. Thus, summer is a critical period for accumulation of body stores to buffer animals against winter; more emphasis should be placed on the role of spring and summer nutrition on population regulation in large, northern herbivores.


Assuntos
Cervos/fisiologia , Fertilidade , Tecido Adiposo/fisiologia , Fatores Etários , Animais , Peso Corporal , Cervos/crescimento & desenvolvimento , Feminino , Modelos Logísticos , Oregon , Densidade Demográfica , Gravidez , Chuva , Estações do Ano , Neve , Washington
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA