Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Mol Diagn ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777037

RESUMO

This study describes the validation of a clinical RNA expression panel with evaluation of concordance between gene copy gain by a next generation sequencing (NGS) assay and high gene expression by an RNA expression panel. The RNA Salah Targeted Expression Panel (RNA STEP) was designed with input from oncologists to include 204 genes with utility for clinical trial prescreening and therapy selection. RNA STEP was validated with the nanoString platform using remnant FFPE-derived RNA from 102 patients previously tested with a validated clinical NGS panel. The repeatability, reproducibility, and concordance of RNA STEP results with NGS results were evaluated. RNA STEP demonstrated high repeatability and reproducibility with excellent correlation (r > 0.97, p < 0.0001) for all comparisons. Comparison of RNA STEP high gene expression (log2 ratio ≥ 2) versus NGS DNA-based gene copy number gain (copies ≥ 5) for 38 mutually covered genes revealed an accuracy of 93.0% with a positive percentage agreement (PPA) of 69.4% and negative percentage agreement (NPA) of 93.8%. Moderate correlation was observed between platforms (r = 0.53, p < 0.0001). Concordance between high gene expression and gene copy number gain varied by specific gene and some genes had higher accuracy between assays. Clinical implementation of RNA STEP provides gene expression data complementary to NGS and offers a tool for prescreening patients for clinical trials.

2.
Biophys J ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38762754

RESUMO

Cyclin-dependent kinase 12 (CDK12) is a critical regulatory protein involved in transcription and DNA repair processes. Dysregulation of CDK12 has been implicated in various diseases, including cancer. Understanding the CDK12 interactome is pivotal for elucidating its functional roles and potential therapeutic targets. Traditional methods for interactome prediction often rely on protein structure information, limiting applicability to CDK12 characterized by partly disordered terminal C region. In this study, we present a structure-independent machine learning model that utilizes proteins' sequence and functional data to predict the CDK12 interactome. This approach is motivated by the disordered character of the CDK12 C-terminal region mitigating a structure-driven search for binding partners. Our approach incorporates multiple data sources, including protein-protein interaction networks, functional annotations, and sequence-based features, to construct a comprehensive CDK12 interactome prediction model. The ability to predict CDK12 interactions without relying on structural information is a significant advancement, as many potential interaction partners may lack crystallographic data. In conclusion, our structure-independent machine learning model presents a powerful tool for predicting the CDK12 interactome and holds promise in advancing our understanding of CDK12 biology, identifying potential therapeutic targets, and facilitating precision medicine approaches for CDK12-associated diseases.

3.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014063

RESUMO

Background: Immunotherapy (IO) has improved survival for patients with advanced clear cell renal cell carcinoma (ccRCC), but resistance to therapy develops in most patients. We use cellular-resolution spatial transcriptomics in patients with IO naïve and IO exposed primary ccRCC tumors to better understand IO resistance. Spatial molecular imaging (SMI) was obtained for tumor and adjacent stroma samples. Spatial gene set enrichment analysis (GSEA) and autocorrelation (coupling with high expression) of ligand-receptor transcript pairs were assessed. Multiplex immunofluorescence (mIF) validation was used for significant autocorrelative findings and the cancer genome atlas (TCGA) and the clinical proteomic tumor analysis consortium (CPTAC) databases were queried to assess bulk RNA expression and proteomic correlates. Results: 21 patient samples underwent SMI. Viable tumors following IO harbored more stromal CD8+ T cells and neutrophils than IO naïve tumors. YES1 was significantly upregulated in IO exposed tumor cells. The epithelial-mesenchymal transition pathway was enriched on spatial GSEA and the associated transcript pair COL4A1-ITGAV had significantly higher autocorrelation in the stroma. Fibroblasts, tumor cells, and endothelium had the relative highest expression. More integrin αV+ cells were seen in IO exposed stroma on mIF validation. Compared to other cancers in TCGA, ccRCC tumors have the highest expression of both COL4A1 and ITGAV. In CPTAC, collagen IV protein was more abundant in advanced stages of disease. Conclusions: On spatial transcriptomics, COL4A1 and ITGAV were more autocorrelated in IO-exposed stroma compared to IO-naïve tumors, with high expression amongst fibroblasts, tumor cells, and endothelium. Integrin represents a potential therapeutic target in IO treated ccRCC.

4.
Cancer Med ; 12(17): 18405-18417, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37525619

RESUMO

BACKGROUND: Aspirin use has been associated with reduced ovarian cancer risk, yet the underlying biological mechanisms are not fully understood. To gain mechanistic insights, we assessed the association between prediagnosis low and regular-dose aspirin use and gene expression profiles in ovarian tumors. METHODS: RNA sequencing was performed on high-grade serous, poorly differentiated, and high-grade endometrioid ovarian cancer tumors from the Nurses' Health Study (NHS), NHSII, and New England Case-Control Study (n = 92 cases for low, 153 cases for regular-dose aspirin). Linear regression identified differentially expressed genes associated with aspirin use, adjusted for birth decade and cohort. False discovery rates (FDR) were used to account for multiple testing and gene set enrichment analysis was used to identify biological pathways. RESULTS: No individual genes were significantly differentially expressed in ovarian tumors in low or regular-dose aspirin users accounting for multiple comparisons. However, current versus never use of low-dose aspirin was associated with upregulation of immune pathways (e.g., allograft rejection, FDR = 5.8 × 10-10 ; interferon-gamma response, FDR = 2.0 × 10-4 ) and downregulation of estrogen response pathways (e.g., estrogen response late, FDR = 4.9 × 10-8 ). Ovarian tumors from current regular aspirin users versus never users were also associated with upregulation in interferon pathways (FDR <1.5 × 10-4 ) and downregulation of multiple extracellular matrix (ECM) architecture pathways (e.g., ECM organization, 4.7 × 10-8 ). CONCLUSION: Our results suggest low and regular-dose aspirin may impair ovarian tumorigenesis in part via enhancing adaptive immune response and decreasing metastatic potential supporting the likely differential effects on ovarian carcinogenesis and progression by dose of aspirin.


Assuntos
Aspirina , Neoplasias Ovarianas , Feminino , Humanos , Aspirina/efeitos adversos , Estudos de Casos e Controles , Neoplasias Ovarianas/patologia , Expressão Gênica , Estrogênios
5.
Cancers (Basel) ; 15(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37509297

RESUMO

Penile squamous cell carcinoma (PSCC) is a rare malignancy in most parts of the world and the underlying mechanisms of this disease have not been fully investigated. About 30-50% of cases are associated with high-risk human papillomavirus (HPV) infection, which may have prognostic value. When PSCC becomes resistant to upfront therapies there are limited options, thus further research is needed in this venue. The extracellular domain-facing protein profile on the cell surface (i.e., the surfaceome) is a key area for biomarker and drug target discovery. This research employs computational methods combined with cell line translatomic (n = 5) and RNA-seq transcriptomic data from patient-derived tumors (n = 18) to characterize the PSCC surfaceome, evaluate the composition dependency on HPV infection, and explore the prognostic impact of identified surfaceome candidates. Immunohistochemistry (IHC) was used to validate the localization of select surfaceome markers. This analysis characterized a diverse surfaceome within patient tumors with 25% and 18% of the surfaceome represented by the functional classes of receptors and transporters, respectively. Significant differences in protein classes were noted by HPV status, with the most change being seen in transporter proteins (25%). IHC confirmed the robust surface expression of select surfaceome targets in the top 85% of expression and a superfamily immunoglobulin protein called BSG/CD147 was prognostic of survival. This study provides the first description of the PSCC surfaceome and its relation to HPV infection and sets a foundation for novel biomarker and drug target discovery in this rare cancer.

6.
Nat Cancer ; 4(5): 586-587, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37237079
7.
BMC Bioinformatics ; 24(1): 125, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37003995

RESUMO

BACKGROUND: Cluster analysis is utilized frequently in scientific theory and applications to separate data into groups. A key assumption in many clustering algorithms is that the data was generated from a population consisting of multiple distinct clusters. Clusterability testing allows users to question the inherent assumption of latent cluster structure, a theoretical requirement for meaningful results in cluster analysis. RESULTS: This paper proposes methods for clusterability testing designed for high-dimensional data by utilizing sparse principal component analysis. Type I error and power of the clusterability tests are evaluated using simulated data with different types of cluster structure in high dimensions. Empirical performance of the new methods is evaluated and compared with prior methods on gene expression, microarray, and shotgun proteomics data. Our methods had reasonably low Type I error and maintained power for many datasets with a variety of structures and dimensions. Cluster structure was not detectable in other datasets with spatially close clusters. CONCLUSION: This is the first analysis of clusterability testing on both simulated and real-world high-dimensional data.


Assuntos
Algoritmos , Análise por Conglomerados
8.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768152

RESUMO

Circulating exosomes in the blood are promising tools for biomarker discovery in cancer. Due to their heterogeneity, different isolation methods may enrich distinct exosome cargos generating different omic profiles. In this study, we evaluated the effects of plasma exosome isolation methods on detectable multi-omic profiles in patients with non-small cell lung cancer (NSCLC), castration-resistant prostate cancer (CRPC), and healthy controls, and developed an algorithm to quantify exosome enrichment. Plasma exosomes were isolated from CRPC (n = 10), NSCLC (n = 14), and healthy controls (n = 10) using three different methods: size exclusion chromatography (SEC), lectin binding, and T-cell immunoglobulin domain and mucin domain-containing protein 4 (TIM4) binding. Molecular profiles were determined by mass spectrometry of extracted exosome fractions. Enrichment analysis of uniquely detected molecules was performed for each method with MetaboAnalyst. The exosome enrichment index (EEI) scores methods based on top differential molecules between patient groups. The lipidomic analysis detected 949 lipids using exosomes from SEC, followed by 246 from lectin binding and 226 from TIM4 binding. The detectable metabolites showed SEC identifying 191 while lectin binding and TIM4 binding identified 100 and 107, respectively. When comparing uniquely detected molecules, different methods showed preferential enrichment of different sets of molecules with SEC enriching the greatest diversity. Compared to controls, SEC identified 28 lipids showing significant difference in NSCLC, while only 1 metabolite in NSCLC and 5 metabolites in CRPC were considered statistically significant (FDR < 0.1). Neither lectin-binding- nor TIM4-binding-derived exosome lipids or metabolites demonstrated significant differences between patient groups. We observed the highest EEI from SEC in lipids (NSCLC: 871.33) which was also noted in metabolites. These results support that the size exclusion method of exosome extraction implemented by SBI captures more heterogeneous exosome populations. In contrast, lectin-binding and TIM4-binding methods bind surface glycans or phosphatidylserine moieties of the exosomes. Overall, these findings suggest that specific isolation methods select subpopulations which may significantly impact cancer biomarker discovery.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Exossomos , Neoplasias Pulmonares , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Exossomos/metabolismo , Lipidômica , Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Metaboloma , Lipídeos/análise , Lectinas/metabolismo
9.
J Inorg Biochem ; 238: 112024, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272187

RESUMO

Although cobalt is a required nutrient, it is toxic due to its ability to generate reactive oxygen species (ROS) and damage DNA. ROS generation by Co2+ often has been compared to that of Fe2+ or Cu+, disregarding the reduction potential differences among these metal ions. In plasmid DNA damage studies, a maximum of 15% DNA damage is observed with Co2+/H2O2 treatment (up to 50 µM and 400 µM, respectively) significantly lower than the 90% damage observed for Fe2+/H2O2 or Cu+/H2O2 treatment. However, when ascorbate is added to the Co2+/H2O2 system, a synergistic effect results in 90% DNA damage. DNA damage by Fe2+/H2O2 can be prevented by polyphenol antioxidants, but polyphenols both prevent and promote DNA damage by Cu+/H2O2. When tested for cobalt-mediated DNA damage affects, eight of ten polyphenols (epicatechin gallate, epigallocatechin gallate, propyl gallate, gallic acid, methyl-3,4,5-trihydroxybenzoate, methyl-4,5-dihydroxybenzoate, protocatechuic acid, and epicatechin) prevent cobalt-mediated DNA damage with IC50 values of 1.3 to 27 µM and two (epigallocatechin and vanillic acid) prevent little to no DNA damage. EPR studies demonstrate cobalt-mediated formation of •OH, O2•-, and •OOH, but not 1O2 in the presence of H2O2 and ascorbate. Epigallocatechin gallate and methyl-4,5-dihydroxybenzoate significantly reduce ROS generated by Co2+/H2O2/ascorbate, consistent with their prevention of cobalt-mediated DNA damage. Thus, while cobalt, iron, and copper are all d-block metal ions, cobalt ROS generation and its prevention is significantly different from that of iron and copper.


Assuntos
Antioxidantes , Polifenóis , Antioxidantes/farmacologia , Polifenóis/farmacologia , Espécies Reativas de Oxigênio , Cobalto , Peróxido de Hidrogênio , Cobre , Oxirredução , Estresse Oxidativo , Ferro
10.
bioRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38187773

RESUMO

Leptomeningeal disease (LMD) occurs when tumors seed into the leptomeningeal space and cerebrospinal fluid (CSF), leading to severe neurological deterioration and poor survival outcomes. We utilized comprehensive multi-omics analyses of CSF from patients with lymphoma LMD to demonstrate an immunosuppressive cellular microenvironment and identified dysregulations in proteins and lipids indicating neurodegenerative processes. Strikingly, we found a significant accumulation of toxic branched-chain keto acids (BCKA) in the CSF of patients with LMD. The BCKA accumulation was found to be a pan-cancer occurrence, evident in lymphoma, breast cancer, and melanoma LMD patients. Functionally, BCKA disrupted the viability and function of endogenous T lymphocytes, chimeric antigen receptor (CAR) T cells, neurons, and meningeal cells. Treatment of LMD mice with BCKA-reducing sodium phenylbutyrate significantly improved neurological function, survival outcomes, and efficacy of anti-CD19 CAR T cell therapy. This is the first report of BCKA accumulation in LMD and provides preclinical evidence that targeting these toxic metabolites improves outcomes.

11.
Front Oncol ; 12: 1051487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505834

RESUMO

Cancer-specific alternatively spliced events (ASE) play a role in cancer pathogenesis and can be targeted by immunotherapy, oligonucleotide therapy, and small molecule inhibition. However, identifying actionable ASE targets remains challenging due to the uncertainty of its protein product, structure impact, and proteoform (protein isoform) function. Here we argue that an integrated multi-omics profiling strategy can overcome these challenges, allowing us to mine this untapped source of targets for therapeutic development. In this review, we will provide an overview of current multi-omics strategies in characterizing ASEs by utilizing the transcriptome, proteome, and state-of-art algorithms for protein structure prediction. We will discuss limitations and knowledge gaps associated with each technology and informatics analytics. Finally, we will discuss future directions that will enable the full integration of multi-omics data for ASE target discovery.

12.
Mol Cell Proteomics ; 21(12): 100438, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332889

RESUMO

Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography-tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1-like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.


Assuntos
Carcinoma Ductal Pancreático , Vesículas Extracelulares , Neoplasias Pancreáticas , Humanos , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/patologia , Proteômica , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Membrana , Neoplasias Pancreáticas
13.
Eur Urol ; 82(4): 354-362, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35718636

RESUMO

BACKGROUND: Alternative mRNA splicing can be dysregulated in cancer, resulting in the generation of aberrant splice variants (SVs). Given the paucity of actionable genomic mutations in clear cell renal cell carcinoma (ccRCC), aberrant SVs may be an avenue to novel mechanisms of pathogenesis. OBJECTIVE: To identify and characterize aberrant SVs enriched in ccRCC. DESIGN, SETTING, AND PARTICIPANTS: Using RNA-seq data from the Cancer Cell Line Encyclopedia, we identified neojunctions uniquely expressed in ccRCC. Candidate SVs were then checked for expression across normal tissue in the Genotype-Tissue Expression Project and primary tumor tissue from The Cancer Genome Atlas (TCGA), Clinical Proteomic Tumor Analysis Consortium (CPTAC), and our institutional Total Cancer Care database. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Clinicopathologic, genomic, and survival data were available for all cohorts. Epigenetic data were available for the TCGA and CPTAC cohorts. Proteomic data were available for the CPTAC cohort. The association of aberrant SV expression with these variables was examined using the Kruskal-Wallis test, pairwise t test, Spearman correlation test, and Cox regression analysis. RESULTS AND LIMITATIONS: Our pipeline identified 16 ccRCC-enriched SVs. EGFR, HPCAL1-SV and RNASET2-SV expression was negatively correlated with gene-specific CpG methylation. We derived a survival risk score based primarily on the expression of five SVs (RNASET2, FGD1, PDZD2, COBLL1, and PTPN14), which was consistent and applicable across multiple cohorts on multivariate analysis. The splicing factor RBM4, which modulates splicing of HIF-1α, exhibited significantly lower expression at the protein level in the high-risk group, as defined by our SV-based score. CONCLUSIONS: We describe 16 aberrant SVs enriched in ccRCC, many of which are associated with disease biology and/or clinical outcomes. This study provides a novel strategy for identifying and characterizing disease-specific aberrant SVs. PATIENT SUMMARY: We describe a method to identify disease targets and biomarkers using transcriptomic analysis beyond somatic mutations or gene expression. Kidney tumors express unique splice variants that may provide additional prognostic information following surgery.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Proteogenômica , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Carcinoma de Células Renais/patologia , Epigênese Genética , Humanos , Neoplasias Renais/patologia , Mutação , Prognóstico , Proteínas Tirosina Fosfatases não Receptoras/genética , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Proteômica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
14.
J Ovarian Res ; 15(1): 59, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562768

RESUMO

BACKGROUND: Greater ovulatory years is associated with increased ovarian cancer risk. Although ovulation leads to an acute pro-inflammatory local environment, how long-term exposure to ovulation impacts ovarian carcinogenesis is not fully understood. Thus, we examined the association between gene expression profiles of ovarian tumors and lifetime ovulatory years to enhance understanding of associated biological pathways. METHODS: RNA sequencing data was generated on 234 invasive ovarian cancer tumors that were high-grade serous, poorly differentiated, or high-grade endometrioid from the Nurses' Health Study (NHS), NHSII, and the New England Case Control Study. We used linear regression to identify differentially expressed genes by estimated ovulatory years, adjusted for birth decade and cohort, overall and stratified by menopausal status at diagnosis. We used false discovery rates (FDR) to account for multiple testing. Gene set enrichment analysis (GSEA) with Cancer Hallmarks, KEGG, and Reactome databases was used to identify biological pathways associated with ovulatory years. RESULTS: No individual genes were significantly differentially expressed by ovulatory years (FDR > 0.19). However, GSEA identified several pathways that were significantly associated with ovulatory years, including downregulation of pathways related to inflammation and proliferation (FDR < 1.0 × 10-5). Greater ovulatory years were more strongly associated with downregulation of genes related to proliferation (e.g., E2F targets, FDR = 1.53 × 10-24; G2M checkpoints, FDR = 3.50 × 10-22) among premenopausal versus postmenopausal women at diagnosis. The association of greater ovulatory years with downregulation of genes involved in inflammatory response such as interferon gamma response pathways (FDR = 7.81 × 10-17) was stronger in postmenopausal women. CONCLUSIONS: Our results provide novel insight into the biological pathways that link ovulatory years to ovarian carcinogenesis, which may lead to development of targeted prevention strategies for ovarian cancer.


Assuntos
Neoplasias Ovarianas , Transcriptoma , Carcinogênese , Carcinoma Epitelial do Ovário , Estudos de Casos e Controles , Feminino , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
15.
ACS Chem Biol ; 17(4): 776-784, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35311290

RESUMO

To aid in the prioritization of deubiquitinases (DUBs) as anticancer targets, we developed an approach combining activity-based protein profiling (ABPP) with mass spectrometry in both non-small cell lung cancer (NSCLC) tumor tissues and cell lines along with analysis of available RNA interference and CRISPR screens. We identified 67 DUBs in NSCLC tissues, 17 of which were overexpressed in adenocarcinoma or squamous cell histologies and 12 of which scored as affecting lung cancer cell viability in RNAi or CRISPR screens. We used the CSN5 inhibitor, which targets COPS5/CSN5, as a tool to understand the biological significance of one of these 12 DUBs, COPS6, in lung cancer. Our study provides a powerful resource to interrogate the role of DUB signaling biology and nominates druggable targets for the treatment of lung cancer subtypes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexo do Signalossomo COP9/genética , Complexo do Signalossomo COP9/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Transdução de Sinais
16.
Mol Cancer Res ; 20(4): 542-555, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022314

RESUMO

To better understand the signaling complexity of AXL, a member of the tumor-associated macrophage (TAM) receptor tyrosine kinase family, we created a physical and functional map of AXL signaling interactions, phosphorylation events, and target-engagement of three AXL tyrosine kinase inhibitors (TKI). We assessed AXL protein complexes using proximity-dependent biotinylation (BioID), effects of AXL TKI on global phosphoproteins using mass spectrometry, and target engagement of AXL TKI using activity-based protein profiling. BioID identifies AXL-interacting proteins that are mostly involved in cell adhesion/migration. Global phosphoproteomics show that AXL inhibition decreases phosphorylation of peptides involved in phosphatidylinositol-mediated signaling and cell adhesion/migration. Comparison of three AXL inhibitors reveals that TKI RXDX-106 inhibits pAXL, pAKT, and migration/invasion of these cells without reducing their viability, while bemcentinib exerts AXL-independent phenotypic effects on viability. Proteomic characterization of these TKIs demonstrates that they inhibit diverse targets in addition to AXL, with bemcentinib having the most off-targets. AXL and EGFR TKI cotreatment did not reverse resistance in cell line models of erlotinib resistance. However, a unique vulnerability was identified in one resistant clone, wherein combination of bemcentinib and erlotinib inhibited cell viability and signaling. We also show that AXL is overexpressed in approximately 30% to 40% of nonsmall but rarely in small cell lung cancer. Cell lines have a wide range of AXL expression, with basal activation detected rarely. IMPLICATIONS: Our study defines mechanisms of action of AXL in lung cancers which can be used to establish assays to measure drug targetable active AXL complexes in patient tissues and inform the strategy for targeting it's signaling as an anticancer therapy.


Assuntos
Neoplasias Pulmonares , Proteômica , Linhagem Celular Tumoral , Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteômica/métodos , Transdução de Sinais
17.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33452133

RESUMO

The harsh microenvironment of ductal carcinoma in situ (DCIS) exerts strong evolutionary selection pressures on cancer cells. We hypothesize that the poor metabolic conditions near the ductal center foment the emergence of a Warburg Effect (WE) phenotype, wherein cells rapidly ferment glucose to lactic acid, even in normoxia. To test this hypothesis, we subjected low-glycolytic breast cancer cells to different microenvironmental selection pressures using combinations of hypoxia, acidosis, low glucose, and starvation for many months and isolated single clones for metabolic and transcriptomic profiling. The two harshest conditions selected for constitutively expressed WE phenotypes. RNA sequencing analysis of WE clones identified the transcription factor KLF4 as potential inducer of the WE phenotype. In stained DCIS samples, KLF4 expression was enriched in the area with the harshest microenvironmental conditions. We simulated in vivo DCIS phenotypic evolution using a mathematical model calibrated from the in vitro results. The WE phenotype emerged in the poor metabolic conditions near the necrotic core. We propose that harsh microenvironments within DCIS select for a WE phenotype through constitutive transcriptional reprogramming, thus conferring a survival advantage and facilitating further growth and invasion.


Assuntos
Neoplasias da Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Fatores de Transcrição Kruppel-Like/genética , Efeito Warburg em Oncologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Glicólise/genética , Humanos , Fator 4 Semelhante a Kruppel , Células MCF-7 , Estadiamento de Neoplasias , Hipóxia Tumoral/genética , Microambiente Tumoral/genética
18.
Methods Mol Biol ; 2194: 187-221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32926368

RESUMO

Highly collaborative scientists are often called on to extend their expertise to different types of projects and to expand the scope and scale of projects well beyond their previous experience. For a large-scale project involving "big data" to be successful, several different aspects of the research plan need to be developed and tested, which include but are not limited to the experimental design, sample collection, sample preparation, metadata recording, technical capability, data acquisition, approaches for data analysis, methods for integration of different data types, recruitment of additional expertise as needed to guide the project, and strategies for clear communication throughout the project. To capture this process, we describe an example project in proteogenomics that built on our collective expertise and experience. Key steps included definition of hypotheses, identification of an appropriate clinical cohort, pilot projects to assess feasibility, refinement of experimental designs, and extensive discussions involving the research team throughout the process. The goal of this chapter is to provide the reader with a set of guidelines to support development of other large-scale multiomics projects.


Assuntos
Bioestatística/métodos , Pesquisa Interdisciplinar/métodos , Proteogenômica/métodos , Big Data , Estudos de Coortes , Expressão Gênica , Genômica/métodos , Humanos , Projetos Piloto , Proteômica/métodos , Projetos de Pesquisa
19.
Nat Commun ; 10(1): 3578, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395880

RESUMO

How genomic and transcriptomic alterations affect the functional proteome in lung cancer is not fully understood. Here, we integrate DNA copy number, somatic mutations, RNA-sequencing, and expression proteomics in a cohort of 108 squamous cell lung cancer (SCC) patients. We identify three proteomic subtypes, two of which (Inflamed, Redox) comprise 87% of tumors. The Inflamed subtype is enriched with neutrophils, B-cells, and monocytes and expresses more PD-1. Redox tumours are enriched for oxidation-reduction and glutathione pathways and harbor more NFE2L2/KEAP1 alterations and copy gain in the 3q2 locus. Proteomic subtypes are not associated with patient survival. However, B-cell-rich tertiary lymph node structures, more common in Inflamed, are associated with better survival. We identify metabolic vulnerabilities (TP63, PSAT1, and TFRC) in Redox. Our work provides a powerful resource for lung SCC biology and suggests therapeutic opportunities based on redox metabolism and immune cell infiltrates.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Proteogenômica , Idoso , Carcinoma de Células Escamosas/patologia , Variações do Número de Cópias de DNA , Feminino , Humanos , Pulmão , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Análise de Sequência de RNA
20.
Oncogene ; 38(44): 6959-6969, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31409900

RESUMO

Bone metastatic prostate cancer provokes extensive osteogenesis by driving the recruitment and osteoblastic differentiation of mesenchymal stromal cells (MSCs). The resulting lesions greatly contribute to patient morbidity and mortality, underscoring the need for defining how prostate metastases subvert the MSC-osteoblast differentiation program. To gain insights into this process we profiled the effects of co-culture of primary MSCs with validated bone metastatic prostate cancer cell line models. These analyses revealed a cast of shared differentially induced genes in MSC, including betaglycan, a co-receptor for TGFß. Betaglycan has not been studied in the context of bone metastatic disease previously. Here we report that loss of betaglycan in MSC is sufficient to augment TGFß signaling, proliferation and migration, and completely blocks the MSC-osteoblast differentiation program. Further, betaglycan was revealed as necessary for prostate cancer-induced osteogenesis in vivo. Mechanistically, gene expression analysis revealed betaglycan controls the expression of a large repertoire of genes in MSCs, and that betaglycan loss provokes >60-fold increase in the expression of Wnt5a that plays important roles in stemness. In accord with the increased Wnt5a levels, there was a marked induction of canonical Wnt signaling in betaglycan ablated MSCs, and the addition of recombinant Wnt5a to MSCs was sufficient to impair osteogenic differentiation. Finally, the addition of Wnt5a neutralizing antibody was sufficient to induce the expression of osteogenic genes in betaglycan-ablated MSCs. Collectively, these findings suggest a betaglycan-Wnt5a circuit represents an attractive vulnerability to ameliorate prostate cancer-induced osteogenesis.


Assuntos
Células-Tronco Mesenquimais/patologia , Osteoblastos/patologia , Osteogênese , Neoplasias da Próstata/patologia , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Humanos , Masculino , Proteoglicanas/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Proteína Wnt-5a/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA