Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Int J Radiat Biol ; 100(4): 527-540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38227483

RESUMO

PURPOSE: In a previous baboon-study, a total of 29 genes were identified for clinical outcome prediction of the hematologic, acute, radiation, syndrome (H-ARS) severity. Among them, four genes (FDXR, DDB2, POU2AF1, WNT3) appeared promising and were validated in five leukemia patients. Within this study, we sought further in-vivo validation in a larger number of whole-body irradiated patients. MATERIAL AND METHODS: Peripheral blood was drawn from 10 leukemia patients before and up to 3 days during a fractionated (2 Gy/day) total-body irradiation (TBI) with 2-12Gy. After RNA-isolation, gene expression (GE) was evaluated on 31 genes widely used in biodosimetry and H-ARS prediction employing qRT-PCR. A customized low-density-array (LDA) allowed simultanously analyzing all genes, the 96-well format further examined the four most promising genes. Fold-changes (FC) in GE relative to pre-irradiation were calculated. RESULTS: Five patients suffering from acute-lymphoblastic-leukemia (ALL) respectively non-Hodgkin-lymphoma (NHL) revealed sufficient RNA-amounts and corresponding lymphocyte and neutrophile counts for running qRT-PCR, while acute-myeloid-leukemia (AML) and one myelofibrosis patient could not supply enough RNA. Generally, 1-2µg total RNA was isolated, whereas up to 10-fold differences in RNA-quantities (associated suppressed GE-changes) were identified among pre-exposure and exposure samples. From 31 genes, 23 were expressed in at least one of the pre-exposure samples. Relative to pre-exposure, the number of expressed genes could halve at 48 and 72h after irradiation. Using the LDA, 13 genes were validated in human samples. The four most promising genes (vid. sup.) were either undetermined or too close to pre-exposure. However, they were measured using the more sensitive 96-well format, except WNT3, which wasn´t detectable. As in previous studies, an opposite regulation in GE for FDXR in leukemia patients (up-regulated) relative to baboons (down-regulated) was reconfirmed. Radiation-induced GE-changes of DDB2 (up-regulated) and POU2AF1 (down-regulated) behaved similarly in both species. Hence, 16 out of 23 genes of two species showed GE-changes in the same direction, and up-regulated FDXR as in human studies were revalidated. CONCLUSION: Identified genes for H-ARS severity prediction, previously detected in baboons, were validated in ALL but not in AML patients. Limitations related to leukemia type, associated reduced RNA amounts, suppressed GE changes, and methodological challenges must be considered as factors negatively affecting the total number of validated genes. Based on that, we propose additional controls including blood cell counts and preferably fluorescence-based RNA quantity measurements for selecting promising samples and using a more sensitive 96-well format for candidate genes with low baseline copy numbers.


Assuntos
Leucemia Mieloide Aguda , RNA , Humanos , Animais , Irradiação Corporal Total , Contagem de Células Sanguíneas , Papio/genética , Leucemia Mieloide Aguda/genética
2.
Radiat Res ; 201(5): 396-405, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38282002

RESUMO

After nuclear scenarios, combined injuries of acute radiation syndrome (ARS) with, e.g., abdominal trauma, will occur and may require contrast-enhanced computed tomography (CT) scans for diagnostic purposes. Here, we investigated the effect of iodinated contrast agents on radiation-induced gene expression (GE) changes used for biodosimetry (AEN, BAX, CDKN1A, EDA2R, APOBEC3H) and for hematologic ARS severity prediction (FDXR, DDB2, WNT3, POU2AF1), and on the induction of double-strand breaks (DSBs) used for biodosimetry. Whole blood samples from 10 healthy donors (5 males, 5 females, mean age: 28 ± 2 years) were irradiated with X rays (0, 1 and 4 Gy) with and without the addition of iodinated contrast agent (0.016 ml contrast agent/ml blood) to the blood prior to the exposure. The amount of contrast agent was set to be equivalent to the blood concentration of an average patient (80 kg) during a contrast-enhanced CT scan. After irradiation, blood samples were incubated at 37°C for 20 min (DSB) and 8 h (GE, DSB). GE was measured employing quantitative real-time polymerase chain reaction. DSB foci were revealed by γH2AX + 53BP1 immunostaining and quantified automatically in >927 cells/sample. Radiation-induced differential gene expression (DGE) and DSB foci were calculated using the respective unexposed sample without supplementation of contrast agent as the reference. Neither the GE nor the number of DSB foci was significantly (P = 0.07-0.94) altered by the contrast agent application. However, for some GE and DSB comparisons with/without contrast agent, there were weakly significant differences (P = 0.03-0.04) without an inherent logic and thus are likely due to inter-individual variation. In nuclear events, the diagnostics of combined injuries can require the use of an iodinated contrast agent, which, according to our results, does not alter or influence radiation-induced GE changes and the quantity of DSB foci. Therefore, the gene expression and γH2AX focus assay can still be applied for biodosimetry and/or hematologic ARS severity prediction in such scenarios.


Assuntos
Meios de Contraste , Quebras de DNA de Cadeia Dupla , Tomografia Computadorizada por Raios X , Humanos , Masculino , Feminino , Adulto , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica/efeitos dos fármacos
3.
Int J Radiat Biol ; 100(1): 99-107, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37676284

RESUMO

PURPOSE: Gene expression (GE) analysis of a radio-sensitive gene set (FDXR, DDB2, WNT3, POU2AF1) has been introduced in the last decade as an early and high-throughput prediction tool of later developing acute hematologic radiation syndrome (H-ARS) severity. The use of special tubes for RNA extraction from peripheral whole blood (PAXgene) represent an established standard in GE studies, although uncommonly used in clinics and not immediately available in the quantities needed in radiological/nuclear (R/N) incidents. On the other hand, EDTA blood tubes are widely utilized in clinical practice. MATERIAL AND METHODS: Using blood samples from eleven healthy donors, we investigated GE changes associated with delayed processing of EDTA tubes up to 4 h at room temperature (RT) after venipuncture (simulating delays caused by daily clinical routine), followed by a subsequent transport time of 24 h at RT, 4 °C, and -20 °C. Differential gene expression (DGE) of the target genes was further examined after X-irradiation with 0 Gy and 4 Gy under optimal transport conditions. RESULTS: No significant changes in DGE were observed when storing EDTA whole blood samples up to 4 h at RT and subsequently kept at 4 °C for 24 h which is in line with expected DGE. However, other storage conditions, such as -20 °C or RT, decreased RNA quality and/or (significantly) caused changes in DGE exceeding the known methodological variance of the qRT-PCR. CONCLUSION: Our data indicate that the use of EDTA whole blood tubes for GE-based H-ARS severity prediction is comparable to the quality of PAXgene tubes, when processed ≤ 4 h after venipuncture and the sample is transported within 24 hours at 4 °C.


Assuntos
Síndrome Aguda da Radiação , Perfilação da Expressão Gênica , Humanos , Ácido Edético , RNA , Coleta de Amostras Sanguíneas
4.
Mar Environ Res ; 192: 106191, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776808

RESUMO

The stone crab, Menippe mercenaria, supports a commercial fishery along Florida's Gulf coast where harmful algae blooms, known as red tides (Karenia brevis) develop. Red tides occur nearly annually and can overlap with the stone crab reproductive season. We determined the impact of moderate red tide (K. brevis) concentrations (∼105 cells L-1) on stone crab embryo development, hatching success, female stress, hatch duration, and larval survival. Crabs and larvae were exposed to a control (no K. brevis) or moderate concentrations of K. brevis. No difference in embryo development or hatching success was observed. Stress was elevated in the K. brevis treatment, resulting in prolonged hatching relative to the control. Larval survival was reduced in K. brevis relative to the control. Moderate concentrations of K. brevis results in sublethal effects on stone crabs and reduces larval survival, suggesting that mitigation that reduces bloom concentrations could provide relief to stone crab populations.


Assuntos
Braquiúros , Dinoflagellida , Animais , Feminino , Toxinas Marinhas , Proliferação Nociva de Algas , Reprodução , Larva , Florida
5.
Acta Biomater ; 168: 286-297, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37451661

RESUMO

Ovarian follicles develop in a highly regulated mechanical microenvironment and disruptions to the microenvironment may cause infertility. However, the viscoelastic properties of the ovarian tissue are not well studied. Here, we characterize both the elastic and viscoelastic properties of ovarian tissue from both reproductively older and younger domestic cats using atomic force microscopy (AFM) indentation and viscoelastic models of stress relaxation. Importantly, our analyses reveal the apparent elastic modulus obtained from the conventional AFM indentation measurement is significantly higher than the intrinsic elastic modulus and insignificantly different from the equivalent elastic modulus that is the summation of the intrinsic elastic modulus and the viscoelastic contribution to modulus at time 0. Interestingly, the ovarian cortex of both reproductive age groups has a higher apparent/intrinsic modulus than that of the medulla. Furthermore, two different kinetics of stress relaxation are identified with rate constants of ∼1 s and ∼20-40 s, respectively. Moreover, the rate constant of the slow kinetics is significantly different between the cortex and medulla in the reproductively older ovaries. Finally, these mechanical heterogeneities appear to follow the heterogeneous distribution of hyaluronic acid (HA) in the ovary. These findings may be invaluable to the development of biomimetic follicle culture for treating infertility. STATEMENT OF SIGNIFICANCE: This study investigates not only elastic but also the viscoelastic heterogeneity in both reproductively younger and older ovarian tissues for the first time. Further, by combining AFM indentation measurement and viscoelastic modeling, we show the apparent elastic modulus conventionally reported in the literature for AFM indentation measurement is the summation of the intrinsic elastic modulus and a significant viscoelastic contribution to the modulus at time 0. This is an important consideration for others who use this method to quantify biomaterial properties. In addition, the possible connection between the mechanical and compositional heterogeneities is explored. These findings may be invaluable for designing biomaterials to recapitulate the mechanical environment of the ovary and possibly many other organs for biomimetic tissue engineering.


Assuntos
Módulo de Elasticidade , Feminino , Animais , Gatos , Microscopia de Força Atômica/métodos
6.
J Assist Reprod Genet ; 40(8): 1817-1828, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37261586

RESUMO

PURPOSE: Trehalose is a non-permeable protectant that is the key to preserve live cells in a dry state for potential storage at ambient temperatures. After intracellular trehalose delivery via cold-responsive nanoparticles (CRNPs), the objective was to characterize the tolerance of cat cumulus-oocyte complexes (COCs) to different levels of microwave-assisted dehydration. METHODS: Trehalose was first encapsulated in CRNPs. After exposure to trehalose-laden CRNPs, different water amounts were removed from cat COCs by microwave drying. After each dehydration level, meiotic and developmental competences were evaluated via in vitro maturation, fertilization, and embryo culture. In addition, expressions of critical genes were assessed by quantitative RT-PCR. RESULTS: CRNPs effectively transported trehalose into COCs within 4 h of co-incubation at 38.5 °C followed by a cold-triggered release at 4 °C for 15 min. Intracellular presence of trehalose enabled the maintenance of developmental competence (formation of blastocysts) as well as normal gene expression levels of HSP70 and DNMT1 at dehydration levels reaching up to 63% of water loss. CONCLUSION: Intracellular trehalose delivery through CRNPs improves dehydration tolerance of COCs, which opens new options for oocyte storage and fertility preservation at ambient temperatures.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Trealose , Feminino , Humanos , Trealose/farmacologia , Desidratação , Micro-Ondas , Oócitos , Células do Cúmulo
8.
Int J Radiat Biol ; 99(10): 1584-1594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36988552

RESUMO

OBJECTIVE: Recently, promising radiation-induced EDA2R gene expression (GE) changes after low level radiation could be shown. Stimulated by that, in this study, we intended to independently validate these findings and to further characterize dose-response relationships in comparison to FDXR and the γH2AX-DNA double-strand break (DSB) focus assay, since both assays are already widely used for biodosimetry purposes. MATERIALS AND METHODS: Peripheral blood samples from six healthy human donors were irradiated ex vivo (dose: ranging from 2.6 to 49.7 mGy). Subsequently, the fold-differences relative to the sham irradiated reference group were calculated. Radiation-induced changes in GE of FDXR and EDA2R were examined using the quantitative real-time polymerase-chain-reaction (qRT-PCR). DSB foci were quantified in 100 γH2AX + 53BP1 immunostained cells employing fluorescence microscopy. Examinations were performed at single time points enabling sufficient detection of both endpoints. RESULTS: A significant increase in EDA2R GE relative to the unexposed control was observed in the range of 2.6 mGy (1.6-fold, p = .045) to 5.4 mGy (2.2-fold, p = .0002), whereas the copy numbers increased linearly up to 13.1-fold at 49.7 mGy. On the contrary, FDXR upregulation (2.2-fold) became significant after a 22.6 mGy exposure (p ≤ .02) and increased linearly up to 4-fold at 49.7 mGy. A significant increase in radiation-induced foci (relative to unexposed, RIF-fd) was observed after 11.3 mGy (RIF-fd: 1.5 ± 0.5, p ≤ .03), while the foci increased linearly up to 3-fold at 49.7 mGy. From this, the FDXR and RIF-fd slopes have shown comparability, while the EDA2R slope was five times higher. Nevertheless, the coefficient of variation (CV) of EDA2R was about 30% higher than for RIF-fd. CONCLUSION: Higher radiation-induced EDA2R GE changes and a lower radiation detection level compared to RIF-fd and FDXR GE changes examined under optimal conditions ex vivo on human samples appear promising. Yet, our results represent just the beginning of further studies to be conducted in animal models for further time- and dose-dependent evaluation and additional examinations on radiologically examined patients to evaluate the impact of confounder, such as age, sex, social behavior, or diseases.


Assuntos
Bioensaio , Exposição à Radiação , Animais , Humanos , Relação Dose-Resposta à Radiação , Bioensaio/métodos , Exposição à Radiação/efeitos adversos , Expressão Gênica
9.
Nat Commun ; 14(1): 392, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36693842

RESUMO

Cancer immunotherapy that deploys the host's immune system to recognize and attack tumors, is a promising strategy for cancer treatment. However, its efficacy is greatly restricted by the immunosuppressive (i.e., immunologically cold) tumor microenvironment (TME). Here, we report an in-situ cryo-immune engineering (ICIE) strategy for turning the TME from immunologically "cold" into "hot". In particular, after the ICIE treatment, the ratio of the CD8+ cytotoxic T cells to the immunosuppressive regulatory T cells is increased by more than 100 times in not only the primary tumors with cryosurgery but also distant tumors without freezing. This is achieved by combining cryosurgery that causes "frostbite" of tumor with cold-responsive nanoparticles that not only target tumor but also rapidly release both anticancer drug and PD-L1 silencing siRNA specifically into the cytosol upon cryosurgery. This ICIE treatment leads to potent immunogenic cell death, which promotes maturation of dendritic cells and activation of CD8+ cytotoxic T cells as well as memory T cells to kill not only primary but also distant/metastatic breast tumors in female mice (i.e., the abscopal effect). Collectively, ICIE may enable an efficient and durable way to leverage the immune system for combating cancer and its metastasis.


Assuntos
Antineoplásicos , Crioterapia , Imunoterapia , Neoplasias , Microambiente Tumoral , Animais , Feminino , Camundongos , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Imunoterapia/métodos , Nanotecnologia/métodos , Neoplasias/imunologia , Neoplasias/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Crioterapia/métodos
10.
Cytotherapy ; 25(5): 502-509, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36513574

RESUMO

BACKGROUND AIMS: As evidenced by ongoing clinical trials and increased activity in the commercial sector, extracellular vesicle (EV)-based therapies have begun the transition from bench to bedside. As this progression continues, one critical aspect of EV clinical translation is understanding the effects of storage and transport conditions. Several studies have assessed the impact of storage on EV characteristics such as morphology, uptake and component content, but effects of storage duration and temperature on EV functional bioactivity and, especially, loaded cargo are rarely reported. METHODS: The authors assessed EV outcomes following storage at different temperatures (room temperature, 4°C, -20°C, -80°C) for various durations as well as after lyophilization. RESULTS: Mesenchymal stromal cell (MSC) EVs were observed to retain key aspects of their bioactivity (pro-vascularization, anti-inflammation) for up to 4-6 weeks at -20°C and -80°C and after lyophilization. Furthermore, via in vitro assays and an in vivo wound healing model, these same storage conditions were also demonstrated to enable preservation of the functionality of loaded microRNA and long non-coding RNA cargo in MSC EVs. CONCLUSIONS: These findings extend the current understanding of how EV therapeutic potential is impacted by storage conditions and may inform best practices for handling and storing MSC EVs for both basic research and translational purposes.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Cicatrização
11.
Radiat Res ; 199(2): 115-123, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36480042

RESUMO

Radiological and especially nuclear accidents and incidents pose a threat to populations. In such events, gene expression (GE) analysis of a set of 4 genes (FDXR, DDB2, POU2AF1, WNT3) is an emerging approach for early and high-throughput prediction of the later manifesting severity degrees of the hematological acute radiation syndrome (H-ARS). Validation of this gene set on radiation victims is difficult since these events are rare. However, chemotherapy (CTX) is widely used e.g., breast cancer patient treatment and pathomechanisms, as well as blood cell count changes are comparable among both exposure types. We wondered whether GE changes are similarly deregulated after CTX, which would be interpreted as a confirmation of our already identified gene set for H-ARS prediction after irradiation. We examined radiation-induced differential GE (DGE) of our gene set as a positive control using in vitro whole blood samples from ten healthy donors (6 females, 4 males, aged: 24-40 years). Blood was incubated in vitro for 8 h after X irradiation with 0 and 4 Gy (1 Gy/min). These data were compared with DGE measured in vivo in blood samples of 10 breast tumor CTX patients (10 females, aged: 39-71 years) before and 4 days after administration of cyclophosphamide and epirubicin. RNA was isolated, reverse transcribed and quantitative real-time polymerase-chain-reaction (qRT-PCR) was performed to assess DGE of FDXR, DDB2, POU2AF1 and WNT3 relative to the unexposed samples using TaqMan assays. After X irradiation, we found a significant upregulation (irrespective of sex) with mean fold changes of 21 (P < 0.001) and 7 (P < 0.001) for FDXR and DDB2 and a significant down-regulation with mean fold changes of 2.5 (P < 0.001) and 2 (P = 0.005) for POU2AF1 and WNT3, respectively. After CTX, a similar pattern was observed, although mean fold changes of up-regulated FDXR (6-fold, P < 0.001) and DDB2 (3-fold, P < 0.001) as well as down-regulated POU2AF1 (1.2-fold, P = 0.270) and WNT3 (1.3-fold, P = 0.069) appeared lower corresponding to less altered blood cell count changes observed after CTX compared to historic radiation exposure data. However, a subpopulation of CTX patients (n = 6) showed on average a significant downregulation of POU2AF1 (1.8-fold, P = 0.04) and WNT3 (2.1-fold, P = 0.008). In summary, the pattern of up-regulated GE changes observed in all CTX patients and down-regulated GE changes observed in a subgroup of CTX patients appeared comparable with an already identified gene set predictive for the radiation-induced H-ARS. This underlines the significance of in vivo GE measurements in CTX patients, employed as a surrogate model to further validate already identified radiation-induced GE changes predictive for the H-ARS.


Assuntos
Síndrome Aguda da Radiação , Exposição à Radiação , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Síndrome Aguda da Radiação/genética , Relação Dose-Resposta à Radiação , Perfilação da Expressão Gênica , Radiografia , RNA
13.
ACS Nano ; 16(7): 11374-11391, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35797466

RESUMO

The circulating tumor cells (CTCs, the root cause of cancer metastasis and poor cancer prognosis) are very difficult to culture for scale-up in vitro, which has hampered their use in cancer research/prognosis and patient-specific therapeutic development. Herein, we report a robust electromicrofluidic chip for not only efficient capture of heterogeneous (EpCAM+ and CD44+) CTCs with high purity but also glutathione-controlled gentle release of the CTCs with high efficiency and viability. This is enabled by coating the polydimethylsiloxane (PDMS) surface in the device with a 10 nm gold layer through a 4 nm titanium coupling layer, for convenient PEGylation and linkage of capture antibodies via the thiol-gold chemistry. Surprisingly, the percentage of EpCAM+ mammary CTCs can be as low as ∼35% (∼70% on average), showing that the commonly used approach of capturing CTCs with EpCAM alone may miss many EpCAM- CTCs. Furthermore, the CD44+ CTCs can be cultured to form 3D spheroids efficiently for scale-up. In contrast, the CTCs captured with EpCAM alone are poor in proliferation in vitro, consistent with the literature. By capture of the CTC heterogeneity, the percentage of stage IV patients whose CTCs can be successfully cultured/scaled up is improved from 12.5% to 68.8%. These findings demonstrate that the common practice of CTC capture with EpCAM alone misses the CTC heterogeneity including the critical CD44+ CTCs. This study may be valuable to the procurement and scale-up of heterogeneous CTCs, to facilitate the understanding of cancer metastasis and the development of cancer metastasis-targeted personalized cancer therapies conveniently via the minimally invasive liquid/blood biopsy.


Assuntos
Células Neoplásicas Circulantes , Titânio , Humanos , Molécula de Adesão da Célula Epitelial , Ouro , Linhagem Celular Tumoral , Células Neoplásicas Circulantes/patologia , Dimetilpolisiloxanos , Glutationa , Polietilenoglicóis
14.
Bioact Mater ; 16: 346-358, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35386332

RESUMO

The conventional approach for fabricating polydimethylsiloxane (PDMS) microfluidic devices is a lengthy and inconvenient procedure and may require a clean-room microfabrication facility often not readily available. Furthermore, living cells can't survive the oxygen-plasma and high-temperature-baking treatments required for covalent bonding to assemble multiple PDMS parts into a leak-free device, and it is difficult to disassemble the devices because of the irreversible covalent bonding. As a result, seeding/loading cells into and retrieving cells from the devices are challenging. Here, we discovered that decreasing the curing agent for crosslinking the PDMS prepolymer increases the noncovalent binding energy of the resultant PDMS surfaces without plasma or any other treatment. This enables convenient fabrication of leak-free microfluidic devices by noncovalent binding for various biomedical applications that require high pressure/flow rates and/or long-term cell culture, by simply hand-pressing the PDMS parts without plasma or any other treatment to bind/assemble. With this method, multiple types of cells can be conveniently loaded into specific areas of the PDMS parts before assembly and due to the reversible nature of the noncovalent bonding, the assembled device can be easily disassembled by hand peeling for retrieving cells. Combining with 3D printers that are widely available for making masters to eliminate the need of photolithography, this facile yet rigorous fabrication approach is much faster and more convenient for making PDMS microfluidic devices than the conventional oxygen plasma-baking-based irreversible covalent bonding method.

15.
Nano Today ; 432022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35251293

RESUMO

Colon and rectal cancers are the leading causes of cancer-related deaths in the United States and effective targeted therapies are in need for treating them. Our genomic analyses show hemizygous deletion of TP53, an important tumor suppressor gene, is highly frequent in both cancers, and the 5-year survival of patients with the more prevalent colon cancer is significantly reduced in the patients with the cancer harboring such deletion, although such reduction is not observed for rectal cancer. Unfortunately, direct targeting TP53 has been unsuccessful for cancer therapy. Interestingly, POLR2A, a gene essential for cell survival and proliferation, is almost always deleted together with TP53 in colon and rectal cancers. Therefore, RNA interference (RNAi) with small interfering RNAs (siRNAs) to precisely target/inhibit POLR2A may be an effective strategy for selectively killing cancer cells with TP53 deficiency. However, the difficulty of delivering siRNAs specifically into the cytosol where they perform their function, is a major barrier for siRNA-based therapies. Here, metformin bicarbonate (MetC) is synthesized to develop pH-responsive MetC-nanoparticles with a unique "bomb" for effective cytosolic delivery of POLR2A siRNA, which greatly facilitates its endo/lysosomal escape into the cytosol and augments its therapeutic efficacy of cancer harboring TP53 deficiency. Moreover, the MetC-based nanoparticles without functional siRNA show notable therapeutic effect with no evident toxicity or immunogenicity.

16.
Nutrients ; 14(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35276775

RESUMO

Due to global advances in technology, image-based food record methods have emerged as an alternative to traditional assessment methods. The use of image-based food records in low and lower-middle income countries such as Tanzania is limited, with countries still using traditional methods. The current study aimed to determine the feasibility of using a new voice and image-based dietary assessment system (VISIDA) in Dar es Salaam, Tanzania. This mixed-method study recruited 18 nutritionists as participants who collected image-based records of food and drinks they consumed using the VISIDA smartphone app. Participants viewed an online demonstration of the VISIDA web platform and the analysis process for intake data collected using the VISIDA app. Then, participants completed an online survey and were interviewed about the VISIDA app and web platform for food and nutrient intake analysis. The method was reported as being acceptable and was found to be easy to use, although technical challenges were experienced by some participants. Most participants indicated a willingness to use the VISIDA app again for one week or longer and were interested in using the VISIDA system in their current role. Participants acknowledged that the VISIDA web platform would simplify some aspects of their current job. Image-based food records could potentially be used in Tanzania to improve the assessment of dietary intake by nutritionists in urban areas. Participants recommended adding sound-on notifications, using the VISIDA app in both Apple and Android phones, enabling installation from the app store, and improving the quality of the fiducial markers.


Assuntos
Avaliação Nutricional , Nutricionistas , Registros de Dieta , Ingestão de Energia , Humanos , Tanzânia
17.
J Heat Transfer ; 144(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35125512

RESUMO

Magnetic nanoparticles, especially superparamagnetic nanoparticles (SPIONs), have attracted tremendous attention for various biomedical applications. Facile synthesis and functionalization together with easy control of the size and shape of SPIONS to customize their unique properties, have made it possible to develop different types of SPIONs tailored for diverse functions/applications. More recently, considerable attention has been paid to the thermal effect of SPIONs for the treatment of diseases like cancer and for nanowarming of cryopreserved/banked cells, tissues, and organs. In this mini-review, recent advances on the magnetic heating effect of SPIONs for magnetothermal therapy and enhancement of cryopreservation of cells, tissues, and organs, are discussed, together with the non-magnetic heating effect (i.e., high Intensity focused ultrasound or HIFU-activated heating) of SPIONs for cancer therapy. Furthermore, challenges facing the use of magnetic nanoparticles in these biomedical applications are presented.

18.
Bioact Mater ; 9: 508-522, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34786523

RESUMO

Cardiomyocytes differentiated from human induced pluripotent stem cells (iPSCs) are valuable for the understanding/treatment of the deadly heart diseases and their drug screening. However, the very much needed homogeneous 3D cardiac differentiation of human iPSCs is still challenging. Here, it is discovered surprisingly that Rock inhibitor (RI), used ubiquitously to improve the survival/yield of human iPSCs, induces early gastrulation-like change to human iPSCs in 3D culture and may cause their heterogeneous differentiation into all the three germ layers (i.e., ectoderm, mesoderm, and endoderm) at the commonly used concentration (10 µM). This greatly compromises the capacity of human iPSCs for homogeneous 3D cardiac differentiation. By reducing the RI to 1 µM for 3D culture, the human iPSCs retain high pluripotency/quality in inner cell mass-like solid 3D spheroids. Consequently, the beating efficiency of 3D cardiac differentiation can be improved to more than 95 % in ~7 days (compared to less than ~50 % in 14 days for the 10 µM RI condition). Furthermore, the outset beating time (OBT) of all resultant cardiac spheroids (CSs) is synchronized within only 1 day and they form a synchronously beating 3D construct after 5-day culture in gelatin methacrylol (GelMA) hydrogel, showing high homogeneity (in terms of the OBT) in functional maturity of the CSs. Moreover, the resultant cardiomyocytes are of high quality with key functional ultrastructures and highly responsive to cardiac drugs. These discoveries may greatly facilitate the utilization of human iPSCs for understanding and treating heart diseases.

19.
Bioact Mater ; 6(12): 4377-4388, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33997514

RESUMO

Human induced pluripotent stem cells (hiPSCs) possess tremendous potential for tissue regeneration and banking hiPSCs by cryopreservation for their ready availability is crucial to their widespread use. However, contemporary methods for hiPSC cryopreservation are associated with both limited cell survival and high concentration of toxic cryoprotectants and/or serum. The latter may cause spontaneous differentiation and/or introduce xenogeneic factors, which may compromise the quality of hiPSCs. Here, sand from nature is discovered to be capable of seeding ice above -10 °C, which enables cryopreservation of hiPSCs with no serum, much-reduced cryoprotectant, and high cell survival. Furthermore, the cryopreserved hiPSCs retain high pluripotency and functions judged by their pluripotency marker expression, cell cycle analysis, and capability of differentiation into the three germ layers. This unique sand-mediated cryopreservation method may greatly facilitate the convenient and ready availability of high-quality hiPSCs and probably many other types of cells/tissues for the emerging cell-based translational medicine.

20.
Nat Commun ; 12(1): 312, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436622

RESUMO

The transmembrane P-glycoprotein (P-gp) pumps that efflux drugs are a major mechanism of cancer drug resistance. They are also important in protecting normal tissue cells from poisonous xenobiotics and endogenous metabolites. Here, we report a fucoidan-decorated silica-carbon nano-onion (FSCNO) hybrid nanoparticle that targets tumor vasculature to specifically release P-gp inhibitor and anticancer drug into tumor cells. The tumor vasculature targeting capability of the nanoparticle is demonstrated using multiple models. Moreover, we reveal the superior light absorption property of nano-onion in the near infrared region (NIR), which enables triggered drug release from the nanoparticle at a low NIR power. The released inhibitor selectively binds to P-gp pumps and disables their function, which improves the bioavailability of anticancer drug inside the cells. Furthermore, free P-gp inhibitor significantly increases the systemic toxicity of a chemotherapy drug, which can be resolved by delivering them with FSCNO nanoparticles in combination with a short low-power NIR laser irradiation.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Carbono/química , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Selectina-P/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Microfluídica , Nanopartículas/ultraestrutura , Neoplasias/irrigação sanguínea , Terapia Fototérmica , Polissacarídeos/química , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA