Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Parkinsons Dis ; 2024: 5787563, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803413

RESUMO

Background: Accurately assessing the severity and frequency of fluctuating motor symptoms is important at all stages of Parkinson's disease management. Contrarily to time-consuming clinical testing or patient self-reporting with uncertain reliability, recordings with wearable sensors show promise as a tool for continuously and objectively assessing PD symptoms. While wearables-based clinical assessments during standardised and scripted tasks have been successfully implemented, assessments during unconstrained activity remain a challenge. Methods: We developed and implemented a supervised machine learning algorithm, trained and tested on tremor scores. We evaluated the algorithm on a 67-hour database comprising sensor data and clinical tremor scores for 24 Parkinson patients at four extremities for periods of about 3 hours. A random 25% subset of the labelled samples was used as test data, the remainder as training data. Based on features extracted from the sensor data, a Support Vector Machine was trained to predict tremor severity. Due to the inherent imbalance in tremor scores, we applied dataset rebalancing techniques. Results: Our classifier demonstrated robust performance in detecting tremor events with a sensitivity of 0.90 on the test-portion of the resampled dataset. The overall classification accuracy was high at 0.88. Conclusion: We implemented an accurate classifier for tremor monitoring in free-living environments that can be trained even with modestly sized and imbalanced datasets. This advancement offers significant clinical value in continuously monitoring Parkinson's disease symptoms beyond the hospital setting, paving the way for personalized management of PD, timely therapeutic adjustments, and improved patient quality of life.

2.
Adv Tech Stand Neurosurg ; 50: 1-30, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38592526

RESUMO

As a concept, drainage of excess fluid volume in the cranium has been around for more than 1000 years. Starting with the original decompression-trepanation of Abulcasis to modern programmable shunt systems, to other nonshunt-based treatments such as endoscopic third ventriculostomy and choroid plexus cauterization, we have come far as a field. However, there are still fundamental limitations that shunts have yet to overcome: namely posture-induced over- and underdrainage, the continual need for valve opening pressure especially in pediatric cases, and the failure to reinstall physiologic intracranial pressure dynamics. However, there are groups worldwide, in the clinic, in industry, and in academia, that are trying to ameliorate the current state of the technology within hydrocephalus treatment. This chapter aims to provide a historical overview of hydrocephalus, current challenges in shunt design, what members of the community have done and continue to do to address these challenges, and finally, a definition of the "perfect" shunt is provided and how the authors are working toward it.


Assuntos
Hidrocefalia , Próteses e Implantes , Humanos , Criança , Instituições de Assistência Ambulatorial , Terapia Comportamental , Catéteres , Hidrocefalia/cirurgia
3.
Brain Stimul ; 17(1): 112-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38272256

RESUMO

BACKGROUND: DBS of the subthalamic nucleus (STN) considerably ameliorates cardinal motor symptoms in PD. Reported STN-DBS effects on secondary dysarthric (speech) and dysphonic symptoms (voice), as originating from vocal tract motor dysfunctions, are however inconsistent with rather deleterious outcomes based on post-surgical assessments. OBJECTIVE: To parametrically and intra-operatively investigate the effects of deep brain stimulation (DBS) on perceptual and acoustic speech and voice quality in Parkinson's disease (PD) patients. METHODS: We performed an assessment of instantaneous intra-operative speech and voice quality changes in PD patients (n = 38) elicited by direct STN stimulations with variations of central stimulation features (depth, laterality, and intensity), separately for each hemisphere. RESULTS: First, perceptual assessments across several raters revealed that certain speech and voice symptoms could be improved with STN-DBS, but this seems largely restricted to right STN-DBS. Second, computer-based acoustic analyses of speech and voice features revealed that both left and right STN-DBS could improve dysarthric speech symptoms, but only right STN-DBS can considerably improve dysphonic symptoms, with left STN-DBS being restricted to only affect voice intensity features. Third, several subareas according to stimulation depth and laterality could be identified in the motoric STN proper and close to the associative STN with optimal (and partly suboptimal) stimulation outcomes. Fourth, low-to-medium stimulation intensities showed the most optimal and balanced effects compared to high intensities. CONCLUSIONS: STN-DBS can considerably improve both speech and voice quality based on a carefully arranged stimulation regimen along central stimulation features.


Assuntos
Estimulação Encefálica Profunda , Disfonia , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Fala , Qualidade da Voz/fisiologia , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia
4.
J Neurosci ; 44(4)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38050110

RESUMO

Working memory (WM) maintenance relies on multiple brain regions and inter-regional communications. The hippocampus and entorhinal cortex (EC) are thought to support this operation. Besides, EC is the main gateway for information between the hippocampus and neocortex. However, the circuit-level mechanism of this interaction during WM maintenance remains unclear in humans. To address these questions, we recorded the intracranial electroencephalography from the hippocampus and EC while patients (N = 13, six females) performed WM tasks. We found that WM maintenance was accompanied by enhanced theta/alpha band (2-12 Hz) phase synchronization between the hippocampus to the EC. The Granger causality and phase slope index analyses consistently showed that WM maintenance was associated with theta/alpha band-coordinated unidirectional influence from the hippocampus to the EC. Besides, this unidirectional inter-regional communication increased with WM load and predicted WM load during memory maintenance. These findings demonstrate that WM maintenance in humans engages the hippocampal-entorhinal circuit, with the hippocampus influencing the EC in a load-dependent manner.


Assuntos
Hipocampo , Memória de Curto Prazo , Feminino , Humanos , Encéfalo , Eletrocorticografia , Córtex Entorrinal , Eletroencefalografia , Ritmo Teta
5.
J Neurosurg ; : 1-8, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922562

RESUMO

OBJECTIVE: Target depth, defined by the z-coordinate in the dorsoventral axis relative to the anterior commissure-posterior commissure axial plane of the MR-guided focused ultrasound (MRgFUS) lesion, is considered to be critical for tremor improvement and the occurrence of side effects such as gait impairment. However, although different z-coordinates are used in the literature, there are no comparative studies available with information on optimal lesion placement. This study aimed to compare two different MRgFUS lesion targets (z = +2 mm vs z = 0 mm) regarding efficacy and safety outcomes. METHODS: The authors conducted a retrospective analysis of 52 patients with pharmacoresistant tremor disorders who received unilateral MRgFUS thalamotomy in the ventral intermediate nucleus for the first time between 2017 and 2022 by one neurosurgeon, with two different z-coordinates, either z = +2 mm (+2-mm group; n = 17) or z = 0 mm (0-mm group; n = 35), but otherwise identical parameters. Standardized video-recorded assessments of efficacy (including the Washington Heights-Inwood Genetic Study of Essential Tremor scale) and safety (using a standardized grading system) outcomes at baseline and at 6 months posttreatment were reviewed and compared. Moreover, overall patient satisfaction was extracted as documented by the examiner at 6 months. RESULTS: Based on a multiple logistic regression analysis, the authors found that a more dorsal target with a z-coordinate of +2 mm as compared with 0 mm was associated with a higher incidence of any persistent side effect at 6 months (p = 0.02). Most consistently, sensory disturbances, although mild and nondisturbing in most cases, occurred more frequently in the +2-mm group (35% vs 11%, p = 0.007), while no significant differences were found for gait impairment (29% vs 35%) and arm ataxia (24% vs 11%). On the other hand, average tremor suppression was similar (63.6% vs 60.2%) between the groups. Here, higher efficacy was associated with a higher side effect burden in the 0-mm group but not in the +2-mm group. Despite the occurrence of side effects, general patient satisfaction was high (87% would undergo MRgFUS again) as most patients valued tremor suppression more. CONCLUSIONS: A more ventral MRgFUS target of z = 0 mm seems to be associated with a more favorable safety and a comparable efficacy profile as compared with a more dorsal target of z = +2 mm, but prospective studies are warranted.

6.
Praxis (Bern 1994) ; 112(7-8): 413-418, 2023 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-37282518

RESUMO

The Value of Deep Brain Stimulation in Difficult-To-Treat and Treatment-Refractory Depression Abstract: Deep Brain Stimulation ("DBS") is a minimally invasive, neurosurgical and hypothesis-driven therapeutic procedure for permanent local regulation of pathological circuits. While depression represents a heterogeneous syndrome with multifactorial etiopathogenesis, neuroscience research is advancing evidence to identify network-level mechanisms that play an important role in the pathophysiology of depression. In the following article, we will review the role of DBS in treatment-resistant or difficult-to-treat depression. The aim is to increase the awareness of DBS and to discuss the challenges of its therapy and implementation.


Assuntos
Estimulação Encefálica Profunda , Transtorno Depressivo Resistente a Tratamento , Humanos , Estimulação Encefálica Profunda/métodos , Transtorno Depressivo Resistente a Tratamento/terapia
7.
Brain ; 146(11): 4717-4735, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37343140

RESUMO

Owing to its unique connectivity profile with cortical brain regions, and its suggested role in the subcortical propagation of seizures, the anterior nucleus of the thalamus (ANT) has been proposed as a key deep brain stimulation (DBS) target in drug-resistant epilepsy. However, the spatio-temporal interaction dynamics of this brain structure, and the functional mechanisms underlying ANT DBS in epilepsy remain unknown. Here, we study how the ANT interacts with the neocortex in vivo in humans and provide a detailed neurofunctional characterization of mechanisms underlying the effectiveness of ANT DBS, aiming at defining intraoperative neural biomarkers of responsiveness to therapy, assessed at 6 months post-implantation as the reduction in seizure frequency. A cohort of 15 patients with drug-resistant epilepsy (n = 6 males, age = 41.6 ± 13.79 years) underwent bilateral ANT DBS implantation. Using intraoperative cortical and ANT simultaneous electrophysiological recordings, we found that the ANT is characterized by high amplitude θ (4-8 Hz) oscillations, mostly in its superior part. The strongest functional connectivity between the ANT and the scalp EEG was also found in the θ band in ipsilateral centro-frontal regions. Upon intraoperative stimulation in the ANT, we found a decrease in higher EEG frequencies (20-70 Hz) and a generalized increase in scalp-to-scalp connectivity. Crucially, we observed that responders to ANT DBS treatment were characterized by higher EEG θ oscillations, higher θ power in the ANT, and stronger ANT-to-scalp θ connectivity, highlighting the crucial role of θ oscillations in the dynamical network characterization of these structures. Our study provides a comprehensive characterization of the interaction dynamic between the ANT and the cortex, delivering crucial information to optimize and predict clinical DBS response in patients with drug-resistant epilepsy.


Assuntos
Núcleos Anteriores do Tálamo , Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Epilepsia , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Epilepsia/terapia , Epilepsia Resistente a Medicamentos/terapia , Convulsões/terapia , Tálamo/fisiologia
8.
Nat Commun ; 14(1): 2921, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217494

RESUMO

Both the hippocampus and amygdala are involved in working memory (WM) processing. However, their specific role in WM is still an open question. Here, we simultaneously recorded intracranial EEG from the amygdala and hippocampus of epilepsy patients while performing a WM task, and compared their representation patterns during the encoding and maintenance periods. By combining multivariate representational analysis and connectivity analyses with machine learning methods, our results revealed a functional specialization of the amygdala-hippocampal circuit: The mnemonic representations in the amygdala were highly distinct and decreased from encoding to maintenance. The hippocampal representations, however, were more similar across different items but remained stable in the absence of the stimulus. WM encoding and maintenance were associated with bidirectional information flow between the amygdala and the hippocampus in low-frequency bands (1-40 Hz). Furthermore, the decoding accuracy on WM load was higher by using representational features in the amygdala during encoding and in the hippocampus during maintenance, and by using information flow from the amygdala during encoding and that from the hippocampus during maintenance, respectively. Taken together, our study reveals that WM processing is associated with functional specialization and interaction within the amygdala-hippocampus circuit.


Assuntos
Epilepsia , Memória de Curto Prazo , Humanos , Hipocampo , Tonsila do Cerebelo , Eletrocorticografia , Imageamento por Ressonância Magnética
9.
Epilepsia ; 64(8): 2044-2055, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209093

RESUMO

OBJECTIVE: Previous studies suggest that intermittent deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) affects physiological sleep architecture. Here, we investigated the impact of continuous ANT DBS on sleep in epilepsy patients in a multicenter crossover study in 10 patients. METHODS: We assessed sleep stage distribution, delta power, delta energy, and total sleep time in standardized 10/20 polysomnographic investigations before and 12 months after DBS lead implantation. RESULTS: In contrast to previous studies, we found no disruption of sleep architecture or alterations of sleep stage distribution under active ANT DBS (p = .76). On the contrary, we observed more consolidated and deeper slow wave sleep (SWS) under continuous high-frequency DBS as compared to baseline sleep prior to DBS lead implantation. In particular, biomarkers of deep sleep (delta power and delta energy) showed a significant increase post-DBS as compared to baseline (36.67 ± 13.68 µV2 /Hz and 799.86 ± 407.56 µV2 *s, p < .001). Furthermore, the observed increase in delta power was related to the location of the active stimulation contact within the ANT; we found higher delta power and higher delta energy in patients with active stimulation in more superior contacts as compared to inferior ANT stimulation. We also observed significantly fewer nocturnal electroencephalographic discharges in DBS ON condition. In conclusion, our findings suggest that continuous ANT DBS in the most cranial part of the target region leads to more consolidated SWS. SIGNIFICANCE: From a clinical perspective, these findings suggest that patients with sleep disruption under cyclic ANT DBS could benefit from an adaptation of stimulation parameters to more superior contacts and continuous mode stimulation.


Assuntos
Núcleos Anteriores do Tálamo , Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Humanos , Estudos Cross-Over , Movimentos Oculares , Sono , Epilepsia Resistente a Medicamentos/terapia
10.
Front Neurol ; 14: 1126298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082443

RESUMO

Background: The identification of patients with gait disturbance associated with idiopathic normal pressure hydrocephalus (iNPH) is challenging. This is due to the multifactorial causes of gait disturbance in elderly people and the single moment examination of laboratory tests. Objective: We aimed to assess whether the use of gait sensors in a patient's home environment could help establish a reliable diagnostic tool to identify patients with iNPH by differentiating them from elderly healthy controls (EHC). Methods: Five wearable inertial measurement units were used in 11 patients with iNPH and 20 matched EHCs. Data were collected in the home environment for 72 h. Fifteen spatio-temporal gait parameters were analyzed. Patients were examined preoperatively and postoperatively. We performed an iNPH sub-group analysis to assess differences between responders vs. non-responders. We aimed to identify parameters that are able to predict a reliable response to VP-shunt placement. Results: Nine gait parameters significantly differ between EHC and patients with iNPH preoperatively. Postoperatively, patients with iNPH showed an improvement in the swing phase (p = 0.042), and compared to the EHC group, there was no significant difference regarding the cadence and traveled arm distance. Patients with a good VP-shunt response (NPH recovery rate of ≥5) significantly differ from the non-responders regarding cycle time, cycle time deviation, number of steps, gait velocity, straight length, stance phase, and stance to swing ratio. A receiver operating characteristic analysis showed good sensitivity for a preoperative stride length of ≥0.44 m and gait velocity of ≥0.39 m/s. Conclusion: There was a significant difference in 60% of the analyzed gait parameters between EHC and patients with iNPH, with a clear improvement toward the normalization of the cadence and traveled arm distance postoperatively, and a clear improvement of the swing phase. Patients with iNPH with a good response to VP-shunt significantly differ from the non-responders with an ameliorated gait pattern.

11.
J Neurosurg ; 138(2): 382-389, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35901672

RESUMO

OBJECTIVE: Decompressive hemicraniectomy (DCE) is the standard of care for space-occupying malignant infarction of the medial cerebral artery in suitable patients. After DCE, the brain is susceptible to trauma and at risk for the syndrome of the trephined. This study aimed to assess the feasibility of using temporary space-expanding flaps, implanted during DCE, to shield the brain from these risks while permitting the injured brain to expand. METHODS: The authors performed a prospective feasibility study to analyze the safety of space-expanding flaps in 10 patients undergoing DCE and evaluated clinical and radiological outcomes. RESULTS: The relatives of 1 patient withdrew consent, leaving 9 patients in the final analysis. No patients required removal of the space-expanding flap because of uncontrolled increase of intracranial pressure or infection. One patient required additional external ventricular drainage and 1 received mannitol. The mean (range) midline shift decreased from 6.67 (3-12) mm to 1.26 (0-2.6) mm after DCE with the space-expanding flap. The authors observed no cases of sinking skin flap syndrome, other complications, or deaths. One patient underwent further treatment due to infection of the reimplanted autologous bone flap. Two patients later refused cranioplasty, preferring to keep the space-expanding flap and thus avoid the potential risks of cranioplasty. CONCLUSIONS: This feasibility study showed that the concurrent use of space-expanding flaps appeared to be safe in patients who underwent DCE for malignant infarction of the medial cerebral artery. Moreover, space-expanding flaps may permit patients to avoid a second surgery for reimplantation of the autologous bone flap and the risks inherent to this procedure.


Assuntos
Craniectomia Descompressiva , Acidente Vascular Cerebral , Humanos , Estudos Prospectivos , Craniectomia Descompressiva/métodos , Retalhos Cirúrgicos , Acidente Vascular Cerebral/cirurgia , Acidente Vascular Cerebral/complicações , Infarto/complicações , Infarto/cirurgia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos
12.
Praxis (Bern 1994) ; 111(13): 731-737, 2022.
Artigo em Alemão | MEDLINE | ID: mdl-36221965

RESUMO

Trigeminal Neuralgia - What Do We Know about the Causes, Diagnosis and Treatment? Abstract. Classical trigeminal neuralgia is typically characterized by a stimulus-evoked, recurrent and intense short-lasting stabbing pain in the innervation area of the trigeminal nerve. Its intensity is among the most severe pain imaginable in humans, and yet it is often misdiagnosed and undertreated. Triggers are common activities of daily life like talking or eating. The classical trigeminal neuralgia is due to a neurovascular compression at the nerve root entry zone. The secondary form is related to an underlying neurological disease (caused for example by multiple sclerosis or compression by a brain tumor); the etiology of the idiopathic trigeminal neuralgia is unknown. Treatment options include both medication (mostly antiepileptic drugs) and escalated interventional approaches (microvascular decompression, neurolesional percutaneous procedures, neuromodulative therapeutic options and radiosurgery).


Assuntos
Cirurgia de Descompressão Microvascular , Radiocirurgia , Neuralgia do Trigêmeo , Anticonvulsivantes/uso terapêutico , Humanos , Cirurgia de Descompressão Microvascular/efeitos adversos , Dor , Radiocirurgia/efeitos adversos , Resultado do Tratamento , Neuralgia do Trigêmeo/diagnóstico , Neuralgia do Trigêmeo/etiologia , Neuralgia do Trigêmeo/terapia
13.
Nat Commun ; 13(1): 6403, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302909

RESUMO

Memory for aversive events is central to survival but can become maladaptive in psychiatric disorders. Memory enhancement for emotional events is thought to depend on amygdala modulation of hippocampal activity. However, the neural dynamics of amygdala-hippocampal communication during emotional memory encoding remain unknown. Using simultaneous intracranial recordings from both structures in human patients, here we show that successful emotional memory encoding depends on the amygdala theta phase to which hippocampal gamma activity and neuronal firing couple. The phase difference between subsequently remembered vs. not-remembered emotional stimuli translates to a time period that enables lagged coherence between amygdala and downstream hippocampal gamma. These results reveal a mechanism whereby amygdala theta phase coordinates transient amygdala -hippocampal gamma coherence to facilitate aversive memory encoding. Pacing of lagged gamma coherence via amygdala theta phase may represent a general mechanism through which the amygdala relays emotional content to distant brain regions to modulate other aspects of cognition, such as attention and decision-making.


Assuntos
Tonsila do Cerebelo , Memória , Humanos , Memória/fisiologia , Tonsila do Cerebelo/fisiologia , Hipocampo/fisiologia , Emoções/fisiologia , Rememoração Mental/fisiologia
14.
Elife ; 112022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35960169

RESUMO

The maintenance of items in working memory (WM) relies on a widespread network of cortical areas and hippocampus where synchronization between electrophysiological recordings reflects functional coupling. We investigated the direction of information flow between auditory cortex and hippocampus while participants heard and then mentally replayed strings of letters in WM by activating their phonological loop. We recorded local field potentials from the hippocampus, reconstructed beamforming sources of scalp EEG, and - additionally in four participants - recorded from subdural cortical electrodes. When analyzing Granger causality, the information flow was from auditory cortex to hippocampus with a peak in the [4 8] Hz range while participants heard the letters. This flow was subsequently reversed during maintenance while participants maintained the letters in memory. The functional interaction between hippocampus and the cortex and the reversal of information flow provide a physiological basis for the encoding of memory items and their active replay during maintenance.


Every day, the brain's ability to temporarily store and recall information ­ called working memory ­ enables us to reason, solve complex problems or to speak. Holding pieces of information in working memory for short periods of times is a skill that relies on communication between neural circuits that span several areas of the brain. The hippocampus, a seahorse-shaped area at the centre of the brain, is well-known for its role in learning and memory. Less clear, however, is how brain regions that process sensory inputs, including visual stimuli and sounds, contribute to working memory. To investigate, Dimakopoulos et al. studied the flow of information between the hippocampus and the auditory cortex, which processes sound. To do so, various types of electrodes were placed on the scalp or surgically implanted in the brains of people with drug-resistant epilepsy. These electrodes measured the brain activity of participants as they read, heard and then mentally replayed strings of up to 8 letters. The electrical signals analysed reflected the flow of information between brain areas. When participants read and heard the sequence of letters, brain signals flowed from the auditory cortex to the hippocampus. The flow of electrical activity was reversed while participants recalled the letters. This pattern was found only in the left side of the brain, as expected for a language related task, and only if participants recalled the letters correctly. This work by Dimakopoulos et al. provides the first evidence of bidirectional communication between brain areas that are active when people memorise and recall information from their working memory. In doing so, it provides a physiological basis for how the brain encodes and replays information stored in working memory, which evidently relies on the interplay between the hippocampus and sensory cortex.


Assuntos
Córtex Auditivo , Eletroencefalografia , Hipocampo/fisiologia , Humanos , Memória de Curto Prazo/fisiologia
15.
Mov Disord Clin Pract ; 9(5): 647-651, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35844284

RESUMO

Background: For safety reasons, both magnetic resonance-guided high-intensity focused ultrasound (MRgHiFUS) thalamotomy and pallidotomy are currently approved exclusively for unilateral treatment, but axial symptoms like levodopa-induced orofacial dyskinesia require a bilateral approach. Objectives: We report the first case of successful bilateral MRgHiFUS pallidotomy for peak-dose dyskinesia in a patient with Parkinson's disease (PD). Methods: The treatment decision was based on the patient's reluctance toward brain implants and pump therapies and the fact that he had limited access to a deep brain stimulation center in his home country. The treatment was planned as staged procedure with an interval of 18 months because of travel restrictions because of the coronavirus disease (COVID)-19 pandemic. Results: After the second treatment, levodopa-induced orofacial dyskinesia remitted and improved bradykinesia and rigidity with stable gait and good postural reflexes. Conclusions: This promising result suggests that in selected PD patients with dyskinesia, staged bilateral MRgHiFUS pallidotomy might be considered.

16.
Neurobiol Dis ; 172: 105818, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835362

RESUMO

Deep brain stimulation (DBS) electrodes provide an unparalleled window to record and investigate neuronal activity right at the core of pathological brain circuits. In Parkinson's disease (PD), basal ganglia beta-oscillatory activity (13-35 Hz) seems to play an outstanding role. Conventional DBS, which globally suppresses beta-activity, does not meet the requirements of a targeted treatment approach given the intricate interplay of physiological and pathological effects of beta-frequencies. Here, we wanted to characterise the local field potential (LFP) in the subthalamic nucleus (STN) in terms of beta-burst prevalence, amplitude and length between movement and rest as well as during self-paced as compared to goal-directed motor control. Our electrophysiological recordings from externalised DBS-electrodes in nine patients with PD showed a marked decrease in beta-burst durations and prevalence during movement as compared to rest as well as shorter and less frequent beta-bursts during cued as compared to self-paced movements. These results underline the importance of beta-burst modulation in movement generation and are in line with the clinical observation that cued motor control is better preserved than self-paced movements. Furthermore, our findings motivate the use of adaptive DBS based on beta-bursts, which selectively trim longer beta-bursts, as it is more suitable and efficient over a range of motor behaviours than conventional DBS.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Gânglios da Base , Ritmo beta/fisiologia , Estimulação Encefálica Profunda/métodos , Humanos , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia
19.
Neuroimage ; 254: 119123, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35321857

RESUMO

The involvement of the medial temporal lobe (MTL) in working memory is controversially discussed. Recent findings suggest that persistent neural firing in the hippocampus during maintenance in verbal working memory is associated with workload. Here, we recorded single neuron firing in 13 epilepsy patients (7 male) while they performed a visual working memory task. The number of colored squares in the stimulus set determined the workload of the trial. Performance was almost perfect for low workload (1 and 2 squares) and dropped at high workload (4 and 6 squares), suggesting that high workload exceeded working memory capacity. We identified maintenance neurons in MTL neurons that showed persistent firing during the maintenance period. More maintenance neurons were found in the hippocampus for trials with correct compared to incorrect performance. Maintenance neurons increased and decreased firing in the hippocampus and increased firing in the entorhinal cortex for high compared to low workload. Population firing predicted workload particularly during the maintenance period. Prediction accuracy of workload based on single-trial activity during maintenance was strongest for neurons in the entorhinal cortex and hippocampus. The data suggest that persistent neural firing in the MTL reflects a domain-general process of maintenance supporting performance and workload of multiple items in working memory below and beyond working memory capacity. Persistent neural firing during maintenance in the entorhinal cortex may be associated with its preference to process visual-spatial arrays.


Assuntos
Memória de Curto Prazo , Carga de Trabalho , Córtex Entorrinal/fisiologia , Feminino , Hipocampo/fisiologia , Humanos , Masculino , Memória de Curto Prazo/fisiologia , Neurônios/fisiologia , Lobo Temporal/fisiologia
20.
J Neurosci ; 42(3): 443-453, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34819340

RESUMO

The hippocampus is a locus of working memory (WM) with anterior and posterior subregions that differ in their transcriptional and external connectivity patterns. However, the involvement and functional connections between these subregions in WM processing are poorly understood. To address these issues, we recorded intracranial EEG from the anterior and the posterior hippocampi in humans (seven females and seven males) who maintained a set of letters in their WM. We found that WM maintenance was accompanied by elevated low-frequency activity in both the anterior and posterior hippocampus and by increased theta/alpha band (3-12 Hz) phase synchronization between anterior and posterior subregions. Cross-frequency and Granger prediction analyses consistently showed that the correct WM trials were associated with theta/alpha band-coordinated unidirectional influence from the posterior to the anterior hippocampus. In contrast, WM errors were associated with bidirectional interactions between the anterior and posterior hippocampus. These findings imply that theta/alpha band synchrony within the hippocampus may support successful WM via a posterior to anterior influence. A combination of intracranial recording and a fine-grained atlas may be of value in understanding the neural mechanisms of WM processing.SIGNIFICANCE STATEMENT Working memory (WM) is crucial to everyday functioning. The hippocampus has been proposed to be a subcortical node involved in WM processes. Previous studies have suggested that the anterior and posterior hippocampi differ in their external connectivity patterns and gene expression. However, it remains unknown whether and how human hippocampal subregions are recruited and coordinated during WM tasks. Here, by recording intracranial electroencephalography simultaneously from both hippocampal subregions, we found enhanced power in both areas and increased phase synchronization between them. Furthermore, correct WM trials were associated with a unidirectional influence from the posterior to the anterior hippocampus, whereas error trials were correlated with bidirectional interactions. These findings indicate a long-axis specialization in the human hippocampus during WM processing.


Assuntos
Ritmo alfa/fisiologia , Hipocampo/fisiologia , Memória de Curto Prazo/fisiologia , Ritmo Teta/fisiologia , Adolescente , Adulto , Eletrocorticografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA