Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 21(12): 2095-2114, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35962279

RESUMO

Clouds and aerosols, as well as overhead ozone, can have large effects on ultraviolet (UV) irradiances. We use statistical methods to remove cloud effects and mean aerosol effects from spectral UV irradiance measurements to investigate the relationship between UV and total column ozone. We show that for fixed solar zenith angles (SZA), seasonal changes in ozone lead to marked changes in clear-sky UV irradiances. Such effects are larger at mid-latitudes than in the tropics. At mid-latitudes, the minimum ozone amount over the course of a year can be about 50 percent of its maximum, with the lowest values in autumn and the highest values in spring. These seasonal ozone changes lead to UV Index (UVI) values in autumn that can exceed those in spring at the same SZA by nearly a factor of two. Differences are even larger for UV spectra weighted by the action spectra for DNA-damaging UV, and for cutaneous previtamin D production. In some cases, the seasonal increase exceeds a factor of 4. The analysis experimentally demonstrates the limits of applicability of the concept of constant Radiative Amplification Factors (RAFs) for estimating effects of changes in ozone for some weighting functions. Changes in DNA-weighted UV and erythemally weighted UV are well represented by the published RAFs. However, there are large SZA dependencies in the case of UVB and vitamin D-weighted UV. For all weightings considered, RAFs calculated from the observations as a function of SZA show similar dependencies between sites, in good agreement with published values, independently of the ozone data source. High quality measurements show that natural variations in ozone are responsible for huge variations in biologically damaging UV, with seasonal changes at fixed solar zenith angles sometimes exceeding a factor of four. The measured changes from thousands of spectra agree well with calculations over a wide range of solar zenith angles.


Assuntos
Ozônio
2.
Photochem Photobiol Sci ; 21(3): 373-384, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35195892

RESUMO

The status of the stratospheric ozone layer is assessed by a panel of experts every 4 years. Reports prepared by this panel include a section with common questions and answers (Q&A) about ozone depletion and related matters. Since 2002, this Q&A supplement has featured a plot comparing historical and current ultraviolet (UV) Index data from Palmer Station, Antarctica (64° S), with measurements at San Diego, California (32° N), and Barrow, Alaska (79° N). The assumptions in generating these plots are discussed and an updated version is presented. The revised plot uses additional data up to the year 2020 and the methods used to create it are better defined and substantiated compared to those used for the legacy plot. Differences between the old and new UV Index values are small (typically < 5%). Both versions illustrate that the ozone hole has led to a large increase in the UV Index at Palmer Station. Between mid-September and mid-November, the maximum UV Index at this site has more than doubled compared to the pre-ozone-hole era (i.e., prior to 1980). When Palmer Station was below the ozone hole in December 1998, an "extreme" UV Index of 14 was observed, exceeding the highest UV Index of 12 ever measured at San Diego despite the city's subtropical latitude. Increases in the UV Index at Barrow and San Diego remain below 40% and 3%, respectively.


Assuntos
Perda de Ozônio , Ozônio , Regiões Antárticas , California , Ozônio/análise , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA