Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(23): e2400667121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38758693

RESUMO

In the mid-1950s, Arthur Kornberg elucidated the enzymatic synthesis of DNA by DNA polymerase, for which he was recognized with the 1959 Nobel Prize in Physiology or Medicine. He then identified many of the proteins that cooperate with DNA polymerase to replicate duplex DNA of small bacteriophages. However, one major unanswered problem was understanding the mechanism and control of the initiation of chromosome replication in bacteria. In a seminal paper in 1981, Fuller, Kaguni, and Kornberg reported the development of a cell-free enzyme system that could replicate DNA that was dependent on the bacterial origin of DNA replication, oriC. This advance opened the door to a flurry of discoveries and important papers that elucidated the process and control of initiation of chromosome replication in bacteria.


Assuntos
Cromossomos Bacterianos , Replicação do DNA , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , História do Século XX , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Bactérias/genética , Bactérias/metabolismo , DNA Bacteriano/metabolismo , DNA Bacteriano/genética
2.
Mol Cell ; 83(3): 352-372, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640769

RESUMO

Errors occurring during DNA replication can result in inaccurate replication, incomplete replication, or re-replication, resulting in genome instability that can lead to diseases such as cancer or disorders such as autism. A great deal of progress has been made toward understanding the entire process of DNA replication in eukaryotes, including the mechanism of initiation and its control. This review focuses on the current understanding of how the origin recognition complex (ORC) contributes to determining the location of replication initiation in the multiple chromosomes within eukaryotic cells, as well as methods for mapping the location and temporal patterning of DNA replication. Origin specification and configuration vary substantially between eukaryotic species and in some cases co-evolved with gene-silencing mechanisms. We discuss the possibility that centromeres and origins of DNA replication were originally derived from a common element and later separated during evolution.


Assuntos
Centrômero , Replicação do DNA , Origem de Replicação , Centrômero/metabolismo , Complexo de Reconhecimento de Origem/genética , Origem de Replicação/genética , Saccharomyces cerevisiae/genética
3.
Elife ; 112022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36520028

RESUMO

Replication of the genome must be coordinated with gene transcription and cellular metabolism, especially following replication stress in the presence of limiting deoxyribonucleotides. The Saccharomyces cerevisiae Rad53 (CHEK2 in mammals) checkpoint kinase plays a major role in cellular responses to DNA replication stress. Cell cycle regulated, genome-wide binding of Rad53 to chromatin was examined. Under replication stress, the kinase bound to sites of active DNA replication initiation and fork progression, but unexpectedly to the promoters of about 20% of genes encoding proteins involved in multiple cellular functions. Rad53 promoter binding correlated with changes in expression of a subset of genes. Rad53 promoter binding to certain genes was influenced by sequence-specific transcription factors and less by checkpoint signaling. However, in checkpoint mutants, untimely activation of late-replicating origins reduces the transcription of nearby genes, with concomitant localization of Rad53 to their gene bodies. We suggest that the Rad53 checkpoint kinase coordinates genome-wide replication and transcription under replication stress conditions.


Assuntos
Proteínas Serina-Treonina Quinases , Proteínas de Saccharomyces cerevisiae , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Replicação do DNA , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Fosforilação
4.
Elife ; 112022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35137685

RESUMO

As a cell prepares to divide, a molecular actor known as the Origin Recognition Complex makes intricate ATP-driven movements to recruit proteins required to duplicate DNA.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Ginástica , Complexo de Reconhecimento de Origem/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
Nat Commun ; 12(1): 3883, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162887

RESUMO

The Origin Recognition Complex (ORC) binds to sites in chromosomes to specify the location of origins of DNA replication. The S. cerevisiae ORC binds to specific DNA sequences throughout the cell cycle but becomes active only when it binds to the replication initiator Cdc6. It has been unclear at the molecular level how Cdc6 activates ORC, converting it to an active recruiter of the Mcm2-7 hexamer, the core of the replicative helicase. Here we report the cryo-EM structure at 3.3 Å resolution of the yeast ORC-Cdc6 bound to an 85-bp ARS1 origin DNA. The structure reveals that Cdc6 contributes to origin DNA recognition via its winged helix domain (WHD) and its initiator-specific motif. Cdc6 binding rearranges a short α-helix in the Orc1 AAA+ domain and the Orc2 WHD, leading to the activation of the Cdc6 ATPase and the formation of the three sites for the recruitment of Mcm2-7, none of which are present in ORC alone. The results illuminate the molecular mechanism of a critical biochemical step in the licensing of eukaryotic replication origins.


Assuntos
Proteínas de Ciclo Celular/genética , Replicação do DNA/genética , DNA Fúngico/genética , Complexo de Reconhecimento de Origem/genética , Origem de Replicação/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Sequência de Bases , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Microscopia Crioeletrônica , DNA Fúngico/química , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Complexo de Reconhecimento de Origem/química , Complexo de Reconhecimento de Origem/metabolismo , Ligação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Mol Cell ; 81(9): 1951-1969.e6, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33761311

RESUMO

The initiation of DNA replication involves cell cycle-dependent assembly and disassembly of protein complexes, including the origin recognition complex (ORC) and CDC6 AAA+ ATPases. We report that multiple short linear protein motifs (SLiMs) within intrinsically disordered regions (IDRs) in ORC1 and CDC6 mediate cyclin-CDK-dependent and independent protein-protein interactions, conditional on the cell cycle phase. A domain within the ORC1 IDR is required for interaction between the ORC1 and CDC6 AAA+ domains in G1, whereas the same domain prevents CDC6-ORC1 interaction during mitosis. Then, during late G1, this domain facilitates ORC1 destruction by a SKP2-cyclin A-CDK2-dependent mechanism. During G1, the CDC6 Cy motif cooperates with cyclin E-CDK2 to promote ORC1-CDC6 interactions. The CDC6 IDR regulates self-interaction by ORC1, thereby controlling ORC1 protein levels. Protein phosphatase 1 binds directly to a SLiM in the ORC1 IDR, causing ORC1 de-phosphorylation upon mitotic exit, increasing ORC1 protein, and promoting pre-RC assembly.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Replicação do DNA , Proteínas Intrinsicamente Desordenadas/metabolismo , Mitose , Proteínas Nucleares/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Domínio AAA , ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Ciclina A/genética , Ciclina A/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Fase G1 , Células HeLa , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Nucleares/genética , Complexo de Reconhecimento de Origem/genética , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Estabilidade Proteica , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo
7.
Elife ; 102021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33522487

RESUMO

The origin recognition complex (ORC) cooperates with CDC6, MCM2-7, and CDT1 to form pre-RC complexes at origins of DNA replication. Here, using tiling-sgRNA CRISPR screens, we report that each subunit of ORC and CDC6 is essential in human cells. Using an auxin-inducible degradation system, we created stable cell lines capable of ablating ORC2 rapidly, revealing multiple cell division cycle phenotypes. The primary defects in the absence of ORC2 were cells encountering difficulty in initiating DNA replication or progressing through the cell division cycle due to reduced MCM2-7 loading onto chromatin in G1 phase. The nuclei of ORC2-deficient cells were also large, with decompacted heterochromatin. Some ORC2-deficient cells that completed DNA replication entered into, but never exited mitosis. ORC1 knockout cells also demonstrated extremely slow cell proliferation and abnormal cell and nuclear morphology. Thus, ORC proteins and CDC6 are indispensable for normal cellular proliferation and contribute to nuclear organization.


Assuntos
Replicação do DNA/genética , Mitose/genética , Complexo de Reconhecimento de Origem/genética , Sistemas CRISPR-Cas , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Técnicas de Inativação de Genes , Humanos , Proteínas de Manutenção de Minicromossomo/genética
8.
Elife ; 92020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32808929

RESUMO

Genome replication is initiated from specific origin sites established by dynamic events. The Origin Recognition Complex (ORC) is necessary for orchestrating the initiation process by binding to origin DNA, recruiting CDC6, and assembling the MCM replicative helicase on DNA. Here we report five cryoEM structures of the human ORC (HsORC) that illustrate the native flexibility of the complex. The absence of ORC1 revealed a compact, stable complex of ORC2-5. Introduction of ORC1 opens the complex into several dynamic conformations. Two structures revealed dynamic movements of the ORC1 AAA+ and ORC2 winged-helix domains that likely impact DNA incorporation into the ORC core. Additional twist and pinch motions were observed in an open ORC conformation revealing a hinge at the ORC5·ORC3 interface that may facilitate ORC binding to DNA. Finally, a structure of ORC was determined with endogenous DNA bound in the core revealing important differences between human and yeast origin recognition.


Assuntos
Complexo de Reconhecimento de Origem/química , Estrutura Secundária de Proteína , Microscopia Crioeletrônica
9.
Proc Natl Acad Sci U S A ; 117(30): 17747-17756, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32669428

RESUMO

DNA replication origins serve as sites of replicative helicase loading. In all eukaryotes, the six-subunit origin recognition complex (Orc1-6; ORC) recognizes the replication origin. During late M-phase of the cell-cycle, Cdc6 binds to ORC and the ORC-Cdc6 complex loads in a multistep reaction and, with the help of Cdt1, the core Mcm2-7 helicase onto DNA. A key intermediate is the ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) complex in which DNA has been already inserted into the central channel of Mcm2-7. Until now, it has been unclear how the origin DNA is guided by ORC-Cdc6 and inserted into the Mcm2-7 hexamer. Here, we truncated the C-terminal winged-helix-domain (WHD) of Mcm6 to slow down the loading reaction, thereby capturing two loading intermediates prior to DNA insertion in budding yeast. In "semi-attached OCCM," the Mcm3 and Mcm7 WHDs latch onto ORC-Cdc6 while the main body of the Mcm2-7 hexamer is not connected. In "pre-insertion OCCM," the main body of Mcm2-7 docks onto ORC-Cdc6, and the origin DNA is bent and positioned adjacent to the open DNA entry gate, poised for insertion, at the Mcm2-Mcm5 interface. We used molecular simulations to reveal the dynamic transition from preloading conformers to the loaded conformers in which the loading of Mcm2-7 on DNA is complete and the DNA entry gate is fully closed. Our work provides multiple molecular insights into a key event of eukaryotic DNA replication.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Replicação do DNA , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Componente 6 do Complexo de Manutenção de Minicromossomo/química , Componente 6 do Complexo de Manutenção de Minicromossomo/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Complexo de Reconhecimento de Origem , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
11.
Nat Struct Mol Biol ; 26(10): 846-847, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31548725
12.
Cell ; 175(1): 6-9, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30217360

RESUMO

This year's Albert Lasker Basic Medical Research Award honors David Allis and Michael Grunstein for their pioneering research that highlighted the importance of histones and their post-translational modifications in the direct control of gene expression.


Assuntos
Cromatina/fisiologia , Histonas/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Distinções e Prêmios , Pesquisa Biomédica , Expressão Gênica , Código das Histonas , Histonas/história , História do Século XXI , Humanos
14.
Cell Cycle ; 17(9): 1102-1114, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30039733

RESUMO

SAMHD1 is the major catabolic enzyme regulating the intracellular concentrations of DNA precursors (dNTPs). The S-phase kinase CDK2-cyclinA phosphorylates SAMHD1 at Thr-592. How this modification affects SAMHD1 function is highly debated. We investigated the role of endogenous SAMHD1 phosphorylation during the cell cycle. Thr-592 phosphorylation occurs first at the G1/S border and is removed during mitotic exit parallel with Thr-phosphorylations of most CDK1 targets. Differential sensitivity to the phosphatase inhibitor okadaic acid suggested different involvement of the PP1 and PP2 families dependent upon the time of the cell cycle. SAMHD1 turn-over indicates that Thr-592 phosphorylation does not cause rapid protein degradation. Furthermore, SAMHD1 influenced the size of the four dNTP pools independently of its phosphorylation. Our findings reveal that SAMHD1 is active during the entire cell cycle and performs an important regulatory role during S-phase by contributing with ribonucleotide reductase to maintain dNTP pool balance for proper DNA replication.


Assuntos
Fosfatos de Dinucleosídeos/metabolismo , Fase S/fisiologia , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Treonina/química , Proteína Quinase CDC2/metabolismo , Proliferação de Células , Ciclina A2/metabolismo , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Técnicas de Inativação de Genes , Humanos , Fosforilação , Proteólise , Ribonucleotídeo Redutases/metabolismo , Fase S/efeitos dos fármacos , Proteína 1 com Domínio SAM e Domínio HD/genética , Células THP-1
15.
Proc Natl Acad Sci U S A ; 114(45): E9529-E9538, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078375

RESUMO

During replication initiation, the core component of the helicase-the Mcm2-7 hexamer-is loaded on origin DNA as a double hexamer (DH). The two ring-shaped hexamers are staggered, leading to a kinked axial channel. How the origin DNA interacts with the axial channel is not understood, but the interaction could provide key insights into Mcm2-7 function and regulation. Here, we report the cryo-EM structure of the Mcm2-7 DH on dsDNA and show that the DNA is zigzagged inside the central channel. Several of the Mcm subunit DNA-binding loops, such as the oligosaccharide-oligonucleotide loops, helix 2 insertion loops, and presensor 1 (PS1) loops, are well defined, and many of them interact extensively with the DNA. The PS1 loops of Mcm 3, 4, 6, and 7, but not 2 and 5, engage the lagging strand with an approximate step size of one base per subunit. Staggered coupling of the two opposing hexamers positions the DNA right in front of the two Mcm2-Mcm5 gates, with each strand being pressed against one gate. The architecture suggests that lagging-strand extrusion initiates in the middle of the DH that is composed of the zinc finger domains of both hexamers. To convert the Mcm2-7 DH structure into the Mcm2-7 hexamer structure found in the active helicase, the N-tier ring of the Mcm2-7 hexamer in the DH-dsDNA needs to tilt and shift laterally. We suggest that these N-tier ring movements cause the DNA strand separation and lagging-strand extrusion.


Assuntos
DNA Helicases/química , Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Manutenção de Minicromossomo/química , Replicação do DNA/genética , Oligossacarídeos/química , Domínios Proteicos/genética , Dedos de Zinco/genética
16.
Nat Struct Mol Biol ; 24(3): 316-324, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28191893

RESUMO

To initiate DNA replication, the origin recognition complex (ORC) and Cdc6 load an Mcm2-7 double hexamer onto DNA. Without ATP hydrolysis, ORC-Cdc6 recruits one Cdt1-bound Mcm2-7 hexamer, thus forming an ORC-Cdc6-Cdt1-Mcm2-7 (OCCM) helicase-loading intermediate. Here we report a 3.9-Å structure of Saccharomyces cerevisiae OCCM on DNA. Flexible Mcm2-7 winged-helix domains (WHDs) engage ORC-Cdc6. A three-domain Cdt1 configuration embraces Mcm2, Mcm4, and Mcm6, thus comprising nearly half of the hexamer. The Cdt1 C-terminal domain extends to the Mcm6 WHD, which binds the Orc4 WHD. DNA passes through the ORC-Cdc6 and Mcm2-7 rings. Origin DNA interaction is mediated by an α-helix within Orc4 and positively charged loops within Orc2 and Cdc6. The Mcm2-7 C-tier AAA+ ring is topologically closed by an Mcm5 loop that embraces Mcm2, but the N-tier-ring Mcm2-Mcm5 interface remains open. This structure suggests a loading mechanism of the first Cdt1-bound Mcm2-7 hexamer by ORC-Cdc6.


Assuntos
Proteínas de Ciclo Celular/química , Replicação do DNA , Proteínas de Ligação a DNA/química , Proteínas de Manutenção de Minicromossomo/química , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Microscopia Crioeletrônica , DNA Fúngico/química , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Espectrometria de Massas , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Manutenção de Minicromossomo/ultraestrutura , Modelos Moleculares , Nucleotídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
17.
Elife ; 62017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112645

RESUMO

Binding of the Origin Recognition Complex (ORC) to origins of replication marks the first step in the initiation of replication of the genome in all eukaryotic cells. Here, we report the structure of the active form of human ORC determined by X-ray crystallography and cryo-electron microscopy. The complex is composed of an ORC1/4/5 motor module lobe in an organization reminiscent of the DNA polymerase clamp loader complexes. A second lobe contains the ORC2/3 subunits. The complex is organized as a double-layered shallow corkscrew, with the AAA+ and AAA+-like domains forming one layer, and the winged-helix domains (WHDs) forming a top layer. CDC6 fits easily between ORC1 and ORC2, completing the ring and the DNA-binding channel, forming an additional ATP hydrolysis site. Analysis of the ATPase activity of the complex provides a basis for understanding ORC activity as well as molecular defects observed in Meier-Gorlin Syndrome mutations.


Assuntos
Adenosina Trifosfatases/química , Complexo de Reconhecimento de Origem/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica
18.
Elife ; 52016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27458800

RESUMO

Newly born cells either continue to proliferate or exit the cell division cycle. This decision involves delaying expression of Cyclin E that promotes DNA replication. ORC1, the Origin Recognition Complex (ORC) large subunit, is inherited into newly born cells after it binds to condensing chromosomes during the preceding mitosis. We demonstrate that ORC1 represses Cyclin E gene (CCNE1) transcription, an E2F1 activated gene that is also repressed by the Retinoblastoma (RB) protein. ORC1 binds to RB, the histone methyltransferase SUV39H1 and to its repressive histone H3K9me3 mark. ORC1 cooperates with SUV39H1 and RB protein to repress E2F1-dependent CCNE1 transcription. In contrast, the ORC1-related replication protein CDC6 binds Cyclin E-CDK2 kinase and in a feedback loop removes RB from ORC1, thereby hyper-activating CCNE1 transcription. The opposing effects of ORC1 and CDC6 in controlling the level of Cyclin E ensures genome stability and a mechanism for linking directly DNA replication and cell division commitment.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclina E/genética , Replicação do DNA , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Transcrição Gênica , Linhagem Celular , Humanos
19.
PLoS One ; 11(4): e0151832, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27050167

RESUMO

BACKGROUND: Cytotoxic chemotherapy can be very effective for the treatment of cancer but toxicity on normal tissues often limits patient tolerance and often causes long-term adverse effects. The objective of this study was to assist in the preclinical development of using modified, non-living bacterially-derived minicells to deliver the potent chemotherapeutic doxorubicin via epidermal growth factor receptor (EGFR) targeting. Specifically, this study sought to evaluate the safety and efficacy of EGFR targeted, doxorubicin loaded minicells (designated EGFRminicellsDox) to deliver doxorubicin to spontaneous brain tumors in 17 companion dogs; a comparative oncology model of human brain cancers. METHODOLOGY/PRINCIPLE FINDINGS: EGFRminicellsDox were administered weekly via intravenous injection to 17 dogs with late-stage brain cancers. Biodistribution was assessed using single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI). Anti-tumor response was determined using MRI, and blood samples were subject to toxicology (hematology, biochemistry) and inflammatory marker analysis. Targeted, doxorubicin-loaded minicells rapidly localized to the core of brain tumors. Complete resolution or marked tumor regression (>90% reduction in tumor volume) were observed in 23.53% of the cohort, with lasting anti-tumor responses characterized by remission in three dogs for more than two years. The median overall survival was 264 days (range 49 to 973). No adverse clinical, hematological or biochemical effects were observed with repeated administration of EGFRminicellsDox (30 to 98 doses administered in 10 of the 17 dogs). CONCLUSIONS/SIGNIFICANCE: Targeted minicells loaded with doxorubicin were safely administered to dogs with late stage brain cancer and clinical activity was observed. These findings demonstrate the strong potential for clinical applications of targeted, doxorubicin-loaded minicells for the effective treatment of patients with brain cancer. On this basis, we have designed a Phase 1 clinical study of EGFR-targeted, doxorubicin-loaded minicells for effective treatment of human patients with recurrent glioblastoma.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Modelos Animais de Doenças , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Terapia de Alvo Molecular , Animais , Antibióticos Antineoplásicos/farmacocinética , Anticorpos Monoclonais/uso terapêutico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Proliferação de Células/efeitos dos fármacos , Cães , Doxorrubicina/farmacocinética , Receptores ErbB , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Masculino , Estadiamento de Neoplasias , Taxa de Sobrevida , Distribuição Tecidual , Células Tumorais Cultivadas
20.
Genome Res ; 26(3): 315-30, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26733669

RESUMO

Eukaryotic chromosomes initiate DNA synthesis from multiple replication origins in a temporally specific manner during S phase. The replicative helicase Mcm2-7 functions in both initiation and fork progression and thus is an important target of regulation. Mcm4, a helicase subunit, possesses an unstructured regulatory domain that mediates control from multiple kinase signaling pathways, including the Dbf4-dependent Cdc7 kinase (DDK). Following replication stress in S phase, Dbf4 and Sld3, an initiation factor and essential target of Cyclin-Dependent Kinase (CDK), are targets of the checkpoint kinase Rad53 for inhibition of initiation from origins that have yet to be activated, so-called late origins. Here, whole-genome DNA replication profile analysis is used to access under various conditions the effect of mutations that alter the Mcm4 regulatory domain and the Rad53 targets, Sld3 and Dbf4. Late origin firing occurs under genotoxic stress when the controls on Mcm4, Sld3, and Dbf4 are simultaneously eliminated. The regulatory domain of Mcm4 plays an important role in the timing of late origin firing, both in an unperturbed S phase and in dNTP limitation. Furthermore, checkpoint control of Sld3 impacts fork progression under replication stress. This effect is parallel to the role of the Mcm4 regulatory domain in monitoring fork progression. Hypomorph mutations in sld3 are suppressed by a mcm4 regulatory domain mutation. Thus, in response to cellular conditions, the functions executed by Sld3, Dbf4, and the regulatory domain of Mcm4 intersect to control origin firing and replication fork progression, thereby ensuring genome stability.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Componente 4 do Complexo de Manutenção de Minicromossomo/metabolismo , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/metabolismo , Alquilantes/farmacologia , Alelos , Quinase do Ponto de Checagem 2/metabolismo , Cromossomos Fúngicos , Quinases Ciclina-Dependentes/metabolismo , Replicação do DNA/efeitos dos fármacos , Hidroxiureia/farmacologia , Componente 4 do Complexo de Manutenção de Minicromossomo/genética , Mutação , Fenótipo , Fosforilação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA