Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(45): 18547-52, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23093671

RESUMO

The anaerobic archaeon Pyrococcus furiosus grows by fermenting carbohydrates producing H(2), CO(2), and acetate. We show here that it is surprisingly tolerant to oxygen, growing well in the presence of 8% (vol/vol) O(2). Although cell growth and acetate production were not significantly affected by O(2), H(2) production was reduced by 50% (using 8% O(2)). The amount of H(2) produced decreased in a linear manner with increasing concentrations of O(2) over the range 2-12% (vol/vol), and for each mole of O(2) consumed, the amount of H(2) produced decreased by approximately 2 mol. The recycling of H(2) by the two cytoplasmic hydrogenases appeared not to play a role in O(2) resistance because a mutant strain lacking both enzymes was not more sensitive to O(2) than the parent strain. Decreased H(2) production was also not due to inactivation of the H(2)-producing, ferredoxin-dependent membrane-bound hydrogenase because its activity was unaffected by O(2) exposure. Electrons from carbohydrate oxidation must therefore be diverted to relieve O(2) stress at the level of reduced ferredoxin before H(2) production. Deletion strains lacking superoxide reductase (SOR) and putative flavodiiron protein A showed increased sensitivity to O(2), indicating that these enzymes play primary roles in resisting O(2). However, a mutant strain lacking the proposed electron donor to SOR, rubredoxin, was unaffected in response to O(2). Hence, electrons from sugar oxidation normally used to produce H(2) are diverted to O(2) detoxification by SOR and putative flavodiiron protein A, but the electron flow pathway from ferredoxin does not necessarily involve rubredoxin.|


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Oxigênio/metabolismo , Pyrococcus furiosus/metabolismo , Temperatura , Proteínas Arqueais/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Elétrons , Flavoproteínas/metabolismo , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Inativação Metabólica , Modelos Biológicos , Mutação/genética , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Oxigênio/farmacologia , Pyrococcus furiosus/citologia , Pyrococcus furiosus/efeitos dos fármacos , Pyrococcus furiosus/crescimento & desenvolvimento , Rubredoxinas/metabolismo
2.
Appl Environ Microbiol ; 78(13): 4669-76, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22544252

RESUMO

We recently reported the isolation of a mutant of Pyrococcus furiosus, COM1, that is naturally and efficiently competent for DNA uptake. While we do not know the exact nature of this mutation, the combined transformation and recombination frequencies of this strain allow marker replacement by direct selection using linear DNA. In testing the limits of its recombination efficiency, we discovered that marker replacement was possible with as few as 40 nucleotides of flanking homology to the target region. We utilized this ability to design a strategy for selection of constructed deletions using PCR products with subsequent excision, or "pop-out," of the selected marker. We used this method to construct a "markerless" deletion of the trpAB locus in the GLW101 (COM1 ΔpyrF) background to generate a strain (JFW02) that is a tight tryptophan auxotroph, providing a genetic background with two auxotrophic markers for further strain construction. The utility of trpAB as a selectable marker was demonstrated using prototrophic selection of plasmids and genomic DNA containing the wild-type trpAB alleles. A deletion of radB was also constructed that, surprisingly, had no obvious effect on either recombination or transformation, suggesting that its gene product is not involved in the COM1 phenotype. Attempts to construct a radA deletion mutation were unsuccessful, suggesting that this may be an essential gene. The ease and speed of this procedure will facilitate the construction of strains with multiple genetic changes and allow the construction of mutants with deletions of virtually any nonessential gene.


Assuntos
Genética Microbiana/métodos , Mutação , Pyrococcus furiosus/genética , Recombinação Genética , Seleção Genética , Competência de Transformação por DNA , Deleção de Genes , Genes Arqueais , Genes Essenciais , Plasmídeos , Transformação Genética
3.
J Bacteriol ; 193(23): 6498-504, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21965560

RESUMO

Transcriptional and enzymatic analyses of Pyrococcus furiosus previously indicated that three proteins play key roles in the metabolism of elemental sulfur (S(0)): a membrane-bound oxidoreductase complex (MBX), a cytoplasmic coenzyme A-dependent NADPH sulfur oxidoreductase (NSR), and sulfur-induced protein A (SipA). Deletion strains, referred to as MBX1, NSR1, and SIP1, respectively, have now been constructed by homologous recombination utilizing the uracil auxotrophic COM1 parent strain (ΔpyrF). The growth of all three mutants on maltose was comparable without S(0), but in its presence, the growth of MBX1 was greatly impaired while the growth of NSR1 and SIP1 was largely unaffected. In the presence of S(0), MBX1 produced little, if any, sulfide but much more acetate (per unit of protein) than the parent strain, demonstrating that MBX plays a critical role in S(0) reduction and energy conservation. In contrast, comparable amounts of sulfide and acetate were produced by NSR1 and the parent strain, indicating that NSR is not essential for energy conservation during S(0) reduction. Differences in transcriptional responses to S(0) in NSR1 suggest that two sulfide dehydrogenase isoenzymes provide a compensatory NADPH-dependent S(0) reduction system. Genes controlled by the S(0)-responsive regulator SurR were not as highly regulated in MBX1 and NSR1. SIP1 produced the same amount of acetate but more sulfide than the parent strain. That SipA is not essential for growth on S(0) indicates that it is not required for detoxification of metal sulfides, as previously suggested. A model is proposed for S(0) reduction by P. furiosus with roles for MBX and NSR in bioenergetics and for SipA in iron-sulfur metabolism.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Membrana/metabolismo , Oxirredutases/metabolismo , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Pyrococcus furiosus/metabolismo , Deleção de Sequência , Enxofre/metabolismo , Proteínas Arqueais/genética , Regulação da Expressão Gênica em Archaea , Proteínas de Membrana/genética , Oxirredução , Oxirredutases/genética
4.
J Bacteriol ; 193(21): 5905-13, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21873494

RESUMO

The mycobactin siderophore system is present in many Mycobacterium species, including M. tuberculosis and other clinically relevant mycobacteria. This siderophore system is believed to be utilized by both pathogenic and nonpathogenic mycobacteria for iron acquisition in both in vivo and ex vivo iron-limiting environments, respectively. Several M. tuberculosis genes located in a so-called mbt gene cluster have been predicted to be required for the biosynthesis of the core scaffold of mycobactin based on sequence analysis. A systematic and controlled mutational analysis probing the hypothesized essential nature of each of these genes for mycobactin production has been lacking. The degree of conservation of mbt gene cluster orthologs remains to be investigated as well. In this study, we sought to conclusively establish whether each of nine mbt genes was required for mycobactin production and to examine the conservation of gene clusters orthologous to the M. tuberculosis mbt gene cluster in other bacteria. We report a systematic mutational analysis of the mbt gene cluster ortholog found in Mycobacterium smegmatis. This mutational analysis demonstrates that eight of the nine mbt genes investigated are essential for mycobactin production. Our genome mining and phylogenetic analyses reveal the presence of orthologous mbt gene clusters in several bacterial species. These gene clusters display significant organizational differences originating from an intricate evolutionary path that might have included horizontal gene transfers. Altogether, the findings reported herein advance our understanding of the genetic requirements for the biosynthesis of an important mycobacterial secondary metabolite with relevance to virulence.


Assuntos
Proteínas de Bactérias/genética , Vias Biossintéticas/genética , Família Multigênica , Mycobacterium smegmatis/genética , Oxazóis/metabolismo , Filogenia , Sequência Conservada , Análise Mutacional de DNA , Ordem dos Genes
5.
Appl Environ Microbiol ; 77(7): 2232-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21317259

RESUMO

In attempts to develop a method of introducing DNA into Pyrococcus furiosus, we discovered a variant within the wild-type population that is naturally and efficiently competent for DNA uptake. A pyrF gene deletion mutant was constructed in the genome, and the combined transformation and recombination frequencies of this strain allowed marker replacement by direct selection using linear DNA. We have demonstrated the use of this strain, designated COM1, for genetic manipulation. Using genetic selections and counterselections based on uracil biosynthesis, we generated single- and double-deletion mutants of the two gene clusters that encode the two cytoplasmic hydrogenases. The COM1 strain will provide the basis for the development of more sophisticated genetic tools allowing the study and metabolic engineering of this important hyperthermophile.


Assuntos
Deleção de Genes , Genética Microbiana/métodos , Pyrococcus furiosus/genética , Recombinação Genética , Transformação Genética , Proteínas Arqueais/genética , Hidrogenase/genética , Pyrococcus furiosus/enzimologia
6.
J Ind Microbiol Biotechnol ; 36(1): 129-37, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18841403

RESUMO

Polyketide antibiotics are among the most important therapeutics used in human and animal health care. Type II polyketides are composed primarily of acetate-derived thioesters, and the subunits for the PKS are contained in a single module that includes a ketosynthase, acyl carrier protein, chain-length factor and sometimes a keto-reductase, aromatase, cyclase and modifying enzymes, such as glycosylases or hydroxylases. While the enzyme complexes that make up the PKS have been the focus of intense study (Khosla in Chem Rev 7:2577-2590, 1997), the pathways for precursor synthesis have not been established and predictions are complicated by the fact that acetate may be derived from a number of metabolic pathways. Here we show that 50% of the acetate for synthesis of the Type II polyketide, actinorhodin, in Streptomyces coelicolor, is derived from the catabolism of the branched amino acids by pathways that are nutrient dependent. The streptomycetes are apparently unique in that they contain two BCDH gene clusters, each of which is potentially capable of converting leucine, valine and isoleucine to the corresponding thioesters, and contain at least three different pathways for valine catabolism that are differentially used in response to nutrient availability.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Antibacterianos/metabolismo , Vias Biossintéticas , Streptomyces coelicolor/metabolismo , Antraquinonas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Macrolídeos/metabolismo , Streptomyces coelicolor/genética
7.
BMC Microbiol ; 8: 122, 2008 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-18644132

RESUMO

BACKGROUND: Yersinia pestis is the causative agent of plague and a potential agent of bioterrorism and biowarfare. The plague biothreat and the emergence of multidrug-resistant plague underscore the need to increase our understanding of the intrinsic potential of Y. pestis for developing antimicrobial resistance and to anticipate the mechanisms of resistance that may emerge in Y. pestis. Identification of Y. pestis genes that, when overexpressed, are capable of reducing antibiotic susceptibility is a useful strategy to expose genes that this pathogen may rely upon to evolve antibiotic resistance via a vertical modality. In this study, we explored the use of a multicopy suppressor, Escherichia coli host-based screening approach as a means to expose antibiotic resistance determinant candidates in Y. pestis. RESULTS: We constructed a multicopy plasmid-based, Y. pestis genome-wide expression library of nearly 16,000 clones in E. coli and screened the library for suppressors of the antimicrobial activity of ofloxacin, a fluoroquinolone antibiotic. The screen permitted the identification of a transcriptional regulator-encoding gene (robAYp) that increased the MIC99 of ofloxacin by 23-fold when overexpressed from a multicopy plasmid in Y. pestis. Additionally, we found that robAYp overexpression in Y. pestis conferred low-level resistance to many other antibiotics and increased organic solvent tolerance. Overexpression of robAYp also upregulated the expression of several efflux pumps in Y. pestis. CONCLUSION: Our study provides proof of principle for the use of multicopy suppressor screening based on the tractable and easy-to-manipulate E. coli host as a means to identify antibiotic resistance determinant candidates of Y. pestis.


Assuntos
Antibacterianos/farmacologia , Cromossomos Bacterianos , Farmacorresistência Bacteriana/genética , Ofloxacino/farmacologia , Yersinia pestis/efeitos dos fármacos , Yersinia pestis/genética , Aminoglicosídeos/farmacologia , Mapeamento Cromossômico , Relação Dose-Resposta a Droga , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genoma Bacteriano , Biblioteca Genômica , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Plasmídeos , RNA Bacteriano/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Solventes/farmacologia
8.
Bioorg Med Chem Lett ; 18(8): 2662-8, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18394884

RESUMO

Drugs inhibiting the iron scarcity-induced, siderophore-mediated iron-scavenging systems of Mycobacterium tuberculosis (Mtb) and Yersinia pestis (Yp) may provide new therapeutic lines of defense. Compounds with structural similarities to siderophores were synthesized and evaluated as antimicrobials against Mtb and Yp under iron-limiting conditions, which mimic the iron scarcity these pathogens encounter and must adapt to in the host, and under standard iron-rich conditions for comparison. New antimicrobials were identified, some of which warrant exploration as initial leads against potentially novel targets and small-molecule tools to assist in the elucidation of targets specific to iron-scarcity adapted Mtb and Yp.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Sideróforos/química , Yersinia pestis/efeitos dos fármacos , Antibacterianos/química , Estrutura Molecular , Sideróforos/biossíntese , Relação Estrutura-Atividade
9.
Chem Biol ; 15(1): 51-61, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18158259

RESUMO

Phenolic glycolipids (PGLs) are polyketide-derived virulence factors produced by Mycobacterium tuberculosis, M. leprae, and other mycobacterial pathogens. We have combined bioinformatic, genetic, biochemical, and chemical biology approaches to illuminate the mechanism of chain initiation required for assembly of the p-hydroxyphenyl-polyketide moiety of PGLs. Our studies have led to the identification of a stand-alone, didomain initiation module, FadD22, comprised of a p-hydroxybenzoic acid adenylation domain and an aroyl carrier protein domain. FadD22 forms an acyl-S-enzyme covalent intermediate in the p-hydroxyphenyl-polyketide chain assembly line. We also used this information to develop a small-molecule inhibitor of PGL biosynthesis. Overall, these studies provide insights into the biosynthesis of an important group of small-molecule mycobacterial virulence factors and support the feasibility of targeting PGL biosynthesis to develop new drugs to treat mycobacterial infections.


Assuntos
Coenzima A Ligases , Inibidores Enzimáticos/farmacologia , Glicolipídeos , Macrolídeos/farmacologia , Mycobacterium tuberculosis/enzimologia , Fenóis , Fatores de Virulência , Adenosina/química , Adenosina/metabolismo , Coenzima A Ligases/antagonistas & inibidores , Coenzima A Ligases/metabolismo , Glicolipídeos/antagonistas & inibidores , Glicolipídeos/biossíntese , Glicolipídeos/química , Humanos , Macrolídeos/química , Modelos Químicos , Mycobacterium tuberculosis/genética , Parabenos/química , Parabenos/metabolismo , Fenóis/antagonistas & inibidores , Fenóis/química , Fenóis/metabolismo , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/biossíntese , Fatores de Virulência/química
10.
J Bacteriol ; 187(2): 664-71, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15629937

RESUMO

Products from the degradation of the branched-chain amino acids valine, leucine, and isoleucine contribute to the production of a number of important cellular metabolites, including branched-chain fatty acids, ATP and other energy production, cell-cell signaling for morphological development, and the synthesis of precursors for polyketide antibiotics. The first nonreversible reactions in the degradation of all three amino acids are catalyzed by the same branched-chain alpha-keto acid dehydrogenase (BCDH) complex. Actinomycetes are apparently unique among bacteria in that they contain two separate gene clusters, each of which encodes a BCDH enzyme complex. Here, we show that one of these clusters in Streptomyces coelicolor is regulated, at least in part, at the level of transcription by the product of the bkdR gene. The predicted product of this gene is a protein with similarity to a family of proteins that respond to leucine and serve to activate transcription of amino acid utilization operons. Unlike most other members of this class, however, the S. coelicolor bkdR gene product serves to repress transcription, suggesting that the branched-chain amino acids act as inducers rather than coactivators of transcription. BkdR likely responds to the presence of branched-chain amino acids. Its role in transcriptional regulation may be rationalized by the fact that transition from vegetative growth to aerial mycelium production, the first stage of morphological development in these complex bacteria, is coincident with extensive cellular lysis generating abundant amounts of protein that likely serve as the predominant source of carbon and nitrogen for metabolism. We suggest that bkdR plays a key role in the ability of Streptomyces species to sense nutrient availability and redirect metabolism for the utilization of branched-chain amino acids for energy, carbon, and perhaps even morphogen synthesis. A null mutant of bkdR is itself defective in morphogenesis and antibiotic production, suggesting that the role of the bkdR gene product may be more global than specific nutrient utilization.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Antibacterianos/biossíntese , Proteínas de Bactérias/fisiologia , Regulação Bacteriana da Expressão Gênica , Streptomyces coelicolor/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/biossíntese , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Ordem dos Genes , Genes Bacterianos , Dados de Sequência Molecular , Família Multigênica , Mutagênese Insercional , Mutação , Homologia de Sequência de Aminoácidos , Streptomyces coelicolor/crescimento & desenvolvimento , Streptomyces coelicolor/metabolismo , Streptomyces coelicolor/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA