Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1208200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691956

RESUMO

Introduction: Ets1 is a lymphoid-enriched transcription factor that regulates B- and Tcell functions in development and disease. Mice that lack Ets1 (Ets1 KO) develop spontaneous autoimmune disease with high levels of autoantibodies. Naïve CD4 + T cells isolated from Ets1 KO mice differentiate more readily to Th17 cells that secrete IL-17, a cytokine implicated in autoimmune disease pathogenesis. To determine if increased IL-17 production contributes to the development of autoimmunity in Ets1 KO mice, we crossed Ets1 KO mice to mice lacking the IL-17 receptor A subunit (IL17RA KO) to generate double knockout (DKO) mice. Methods: In this study, the status of the immune system of DKO and control mice was assessed utilizing ELISA, ELISpot, immunofluorescent microscopy, and flow cytometric analysis of the spleen, lymph node, skin. The transcriptome of ventral neck skin was analyzed through RNA sequencing. S. aureus clearance kinetics in in exogenously infected mice was conducted using bioluminescent S. aureus and tracked using an IVIS imaging experimental scheme. Results: We found that the absence of IL17RA signaling did not prevent or ameliorate the autoimmune phenotype of Ets1 KO mice but rather that DKO animals exhibited worse symptoms with striking increases in activated B cells and secreted autoantibodies. This was correlated with a prominent increase in the numbers of T follicular helper (Tfh) cells. In addition to the autoimmune phenotype, DKO mice also showed signs of immunodeficiency and developed spontaneous skin lesions colonized by Staphylococcus xylosus. When DKO mice were experimentally infected with Staphylococcus aureus, they were unable to clear the bacteria, suggesting a general immunodeficiency to staphylococcal species. γδ T cells are important for the control of skin staphylococcal infections. We found that mice lacking Ets1 have a complete deficiency of the γδ T-cell subset dendritic epidermal T cells (DETCs), which are involved in skin woundhealing responses, but normal numbers of other skin γδ T cells. To determine if loss of DETC combined with impaired IL-17 signaling might promote susceptibility to staph infection, we depleted DETC from IL17RA KO mice and found that the combined loss of DETC and impaired IL-17 signaling leads to an impaired clearance of the infection. Conclusions: Our studies suggest that loss of IL-17 signaling can result in enhanced autoimmunity in Ets1 deficient autoimmune-prone mice. In addition, defects in wound healing, such as that caused by loss of DETC, can cooperate with impaired IL-17 responses to lead to increased susceptibility to skin staph infections.


Assuntos
Doenças Autoimunes , Proteína Proto-Oncogênica c-ets-1 , Receptores de Interleucina-17 , Infecções Estafilocócicas , Animais , Camundongos , Autoanticorpos , Doenças Autoimunes/genética , Autoimunidade , Interleucina-17 , Receptores de Interleucina-17/metabolismo , Staphylococcus aureus , Proteína Proto-Oncogênica c-ets-1/metabolismo
2.
Immunohorizons ; 3(7): 331-340, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31356162

RESUMO

Ets1 is emerging as a key transcription factor that is required to prevent autoimmunity in mice and humans. Ets1 is expressed in both B and T cells, and mice lacking Ets1 are characterized by excess B and T cell activation, leading to enhanced formation of Ab-secreting cells and high titers of autoantibodies. In humans, genome-wide association studies have detected associations of single nucleotide polymorphisms in the human ETS1 gene with autoimmune diseases, including lupus. An increased fraction of CD4+ T cells from Ets1-/- mice have an activated effector-memory phenotype, and there are aberrations in differentiation that contribute to the autoimmune phenotype. In vitro studies of B cells suggest that Ets1 may have B cell-intrinsic effects as well. To confirm B cell-intrinsic roles for Ets1, we crossed CD19-Cre mice to mice with a floxed allele of Ets1. Mice with a B cell-specific deletion of Ets1 show increases in B cell activation, numbers of Ab-secreting cells, and levels of autoantibodies, despite the fact that T cells are normal. However, when compared with conventional Ets1 knockout mice, mice with B cell-specific loss of Ets1 have a significantly milder phenotype. These results demonstrate that Ets1 is required in B cells to prevent autoimmune responses but that loss of Ets1 activity in other cell types is required for maximal autoimmune phenotypes.


Assuntos
Autoimunidade/imunologia , Linfócitos B/imunologia , Ativação Linfocitária , Proteína Proto-Oncogênica c-ets-1/metabolismo , Alelos , Animais , Complexo Antígeno-Anticorpo/metabolismo , Autoanticorpos/biossíntese , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/genética , Técnicas de Inativação de Genes , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Rim/imunologia , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Proteína Proto-Oncogênica c-ets-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA