Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dermatology ; 237(2): 283-290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32799209

RESUMO

BACKGROUND: The thioredoxin-interacting protein (TXNIP) is involved in cellular metabolism and cell proliferation, and recently, deficient expression of TXNIP has been associated with progression and poor outcome for cancer patients. OBJECTIVES: To assess TXNIP expression and function in malignant T cells from cutaneous T-cell lymphoma (CTCL). METHODS: CTCL-derived malignant (MyLa2059, PB2B) and non-malignant (MyLa1850) cell lines were analysed by Western blotting and qPCR for TXNIP expression. Subsequently, the malignant CTCL cell lines were treated with GSK126 - an inhibitor of enhancer of zeste homolog 2 (EZH2) methyltransferase activity or assessed by bisulphite sequencing for TXNIP promoter methylation. Methylation was also assessed with the demethylating agent 5-azacytidine (5AZA). Finally, TXNIP was overexpressed in the malignant PB2B cell line via plasmid transduction, and the effect of TXNIP was further analysed by flow cytometry. RESULTS: We report on low expression of TXNIP protein in all cell lines representing different subtypes and stages of CTCL when compared to non-malignant T cells. Epigenetic silencing and other mechanisms were involved in the repression of TXNIP whereas forced expression of TXNIP strongly inhibited proliferation of malignant T cells. CONCLUSIONS: Epigenetic silencing and other as yet unknown mechanisms repress TXNIP expression in malignant T cells. As forced expression of TXNIP inhibits malignant proliferation, we propose that TXNIP is a putative tumour suppressor in CTCL.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linfoma Cutâneo de Células T/patologia , Neoplasias Cutâneas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Epigênese Genética , Inativação Gênica , Humanos , Indóis/farmacologia , Regiões Promotoras Genéticas , Piridonas/farmacologia
2.
Front Cell Dev Biol ; 8: 851, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015047

RESUMO

Cutaneous T-cell lymphoma (CTCL) comprises a group of lymphoproliferative diseases characterized by the accumulation of malignant T cells in chronically inflamed skin lesions. In early stages, the disease presents as skin patches or plaques covering a limited area of the skin and normally follows an indolent course. However, in a subset of patients the cutaneous lesions develop into tumors and the malignant T cells may spread to the lymphatic system, blood and internal organs with fatal consequences. Despite intensive research, the mechanisms driving disease progression remain incompletely understood. While most studies have focused on cancer cell-intrinsic oncogenesis, such as genetic and epigenetic events driving malignant transformation and disease progression, an increasing body of evidence shows that the interplay between malignant T cells and non-malignant cells plays a crucial role. Here, we outline some of the emerging mechanisms by which tumor, stromal and epidermal interactions may contribute to the progression of CTCL with particular emphasis on the crosstalk between fibroblasts, keratinocytes and malignant T cells.

3.
Acta Derm Venereol ; 100(16): adv00270, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32556351

RESUMO

A prognostic 3-miRNA classifier for early-stage mycosis fungoides has been developed recently, with miR-106b providing the strongest prognostic power. The aim of this study was to investigate the molecular function of miR-106b in mycosis fungoides disease progression. The cellular localization of miR-106b in mycosis fungoides skin biopsies was determined by in situ hybridization. The regulatory role of miR-106b was assessed by transient miR-106b inhibitor/mimic transfection of 2 mycosis fungoides derived cell lines, followed by quantitative real-time PCR (RT-qPCR), western blotting and a proliferation assay. MiR-106b was found to be expressed by dermal T-lymphocytes in mycosis fungoides skin lesions, and miR-106b expression increased with advancing mycosis fungoides stage. Transfection of miR-106b in 2 mycosis fungoides derived cell lines showed that miR-106b represses the tumour suppressors cyclin-dependent kinase inhibitor 1 (p21) and thioredoxin-interacting protein (TXNIP) and promotes mycosis fungoides tumour cell proliferation. In conclusion, these results substantiate that miR-106b has both a functional and prognostic role in progression of mycosis fungoides.


Assuntos
MicroRNAs , Micose Fungoide , Neoplasias Cutâneas , Proteínas de Transporte , Proliferação de Células , Humanos , MicroRNAs/genética , Micose Fungoide/genética , Prognóstico , Neoplasias Cutâneas/genética
4.
Oncotarget ; 10(47): 4894-4906, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31448055

RESUMO

The voltage-gated potassium channel Kv1.3 (KCNA3) is expressed by a subset of chronically activated memory T cells and plays an important role in their activation and proliferation. Here, we show that primary malignant T cells isolated from patients with Sézary syndrome (SS) express Kv1.3 and are sensitive to potent Kv1.3 inhibitors ShK and Vm24, but not sensitive to a less potent inhibitor [N17A/F32T]-AnTx. Kv1.3 blockade inhibits CD3/CD28-induced proliferation and IL-9 expression by SS cells in a concentration-dependent manner. In parallel, CD3/CD28-mediated CD25 induction is inhibited, whereas Kv1.3 blockade has no effect on apoptosis or cell death as judged by Annexin V and PI staining. In conclusion, we provide the first evidence that malignant T cells in SS express functional Kv1.3 channels and that Kv1.3 blockade inhibits activation-induced proliferation as well as cytokine and cytokine receptor expression in malignant T cells, suggesting that Kv1.3 is a potential target for therapy in SS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA