Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 16(14): e202300296, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37015042

RESUMO

The hydrophilic poly(2,2,6,6-tetramethylpiperdinyloxy-4-yl-methacrylamide) (PTMAm) was utilized as redox target material in an aqueous organic redox targeting flow battery (RTFB). This polymer is processed into granules, which contain a conductive agent and an alginate binder. By this, a hydrophilic, yet water-insoluble redox target can be obtained. The target was combined with the redox mediator molecule N,N,N-trimethyl-2-oxo-2-[(2,2,6,6-tetramethylpiperidin-4-yloxyl)amino]ethan-1-ammonium chloride (TEMPOAmide), that has been reported earlier as flow battery active material. This target/mediator combination has been characterized electrochemically and flow battery testing has been done. Furthermore, in-operando characterization of the redox target via electrolyte state-of-charge (SOC) monitoring has been performed for the first time. The approach provides estimates for the redox target's SOC changes during cycling. In addition, a figure of merit - the "redox targetivity" - is proposed, which provides insights into the efficiency of the targeting reaction and supports the future optimization of materials, cell designs, and operational parameters for RTFBs.

2.
ACS Appl Mater Interfaces ; 14(5): 6638-6648, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35084188

RESUMO

The volumetric capacities and the lifetime of organic redox flow batteries (RFBs) are strongly dependent on the concentrations of the redox-active molecules in the electrolyte. Single-molecule redox targeting represents an efficient approach toward realizing viable organic RFBs with low to moderate electrolyte concentrations. For the first time, an all-organic Nernstian potential-driven redox targeting system is investigated that directly combines a single-electrode material from organic radical batteries (ORBs) with a single redox couple of an aqueous, organic RFB, which are based on the same redox moiety. Namely, poly(TEMPO-methacrylate) (PTMA) is utilized as the redox target ("solid booster") and N,N,N-2,2,6,6-heptamethylpiperidinyloxy-4-ammonium chloride (TMATEMPO) is applied as the sole redox mediator to demonstrate the redox targeting mechanisms between the storage materials of both battery types. The formal potentials of both molecules are investigated, and the targeting mechanism is verified by cyclic voltammetry and state-of-charge measurements. Finally, battery cycling experiments demonstrate that 78-90% of the theoretical capacity of the ORB electrode material can be addressed when this material is present as the redox target in the electrolyte tank of an operating, aqueous organic RFB.

3.
Mater Horiz ; 8(7): 1866-1925, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846470

RESUMO

Flow batteries (FBs) currently are one of the most promising large-scale energy storage technologies for energy grids with a large share of renewable electricity generation. Among the main technological challenges for the economic operation of a large-scale battery technology is its calendar lifetime, which ideally has to cover a few decades without significant loss of performance. This requirement can only be met if the key parameters representing the performance losses of the system are continuously monitored and optimized during the operation. Nearly all performance parameters of a FB are related to the two electrolytes as the electrochemical storage media and we therefore focus on them in this review. We first survey the literature on the available characterization methods for the key FB electrolyte parameters. Based on these, we comprehensively review the currently available approaches for assessing the most important electrolyte state variables: the state-of-charge (SOC) and the state-of-health (SOH). We furthermore discuss how monitoring and operation strategies are commonly implemented as online tools to optimize the electrolyte performance and recover lost battery capacity as well as how their automation is realized via battery management systems (BMSs). Our key findings on the current state of this research field are finally highlighted and the potential for further progress is identified.

4.
ACS Appl Mater Interfaces ; 8(36): 23614-23, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27570872

RESUMO

Application and investigation of porous composite electrodes for organic batteries fabricated by an ice-templating method are reported for the first time. The possibility to produce polymer composite electrodes with highly aligned, parallel pores is demonstrated and electrochemical investigations are presented to examine their suitability for application in organic batteries. The performance of such ice-templated porous electrodes is experimentally compared with planar electrodes of similar composition against zinc and lithium counter electrodes, respectively. Fundamental properties limiting the performance of ice-templated porous electrodes are discussed and further means to overcome those limitations are proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA