Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(1): e0274371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36638091

RESUMO

The objective of this study was to investigate the effect of varying roughage and concentrate proportions, in diet of crossbreed dairy cattle, on the composition and associated functional genes of rumen and fecal microbiota. We also explored fecal samples as a proxy for rumen liquor samples. Six crossbred dairy cattle were reared on three diets with an increasing concentrate and reducing roughage amount in three consecutive 10-day periods. After each period, individual rumen liquor and fecal samples were collected and analyzed through shotgun metagenomic sequencing. Average relative abundance of identified Operational Taxonomic Units (OTU) and microbial functional roles from all animals were compared between diets and sample types (fecal and rumen liquor). Results indicated that dietary modifications significantly affected several rumen and fecal microbial OTUs. In the rumen, an increase in dietary concentrate resulted in an upsurge in the abundance of Proteobacteria, while reducing the proportions of Bacteroidetes and Firmicutes. Conversely, changes in microbial composition in fecal samples were not consistent with dietary modification patterns. Microbial functional pathway classification identified that carbohydrate metabolism and protein metabolism pathways dominated microbial roles. Assessment of dietary effects on the predicted functional roles of these microbiota revealed that a high amount of dietary concentrate resulted in an increase in central carbohydrate metabolism and a corresponding reduction in protein synthesis. Moreover, we identified several microbial stress-related responses linked to dietary changes. Bacteroides and Clostridium genera were the principal hosts of these microbial functions. Therefore, the roughage to concentrate proportion has more influence on the microbial composition and microbial functional genes in rumen samples than fecal samples. As such, we did not establish a significant relationship between the rumen and fecal metagenome profiles, and the rumen and fecal microbiota from one animal did not correlate more than those from different animals.


Assuntos
Microbiota , Rúmen , Animais , Bovinos , Rúmen/microbiologia , Microbiota/genética , Metagenoma , Proteobactérias/genética , Fibras na Dieta/metabolismo , Dieta/veterinária , Ração Animal/análise
2.
PLoS One ; 17(10): e0263540, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36190939

RESUMO

Single Nucleotide Polymorphisms (SNPs) are now popular for a myriad of applications in animal and plant species including, ancestry assignment, conservation genetics, breeding, and traceability of animal products. The objective of this study was to develop a customized cost-effective SNP panel for genetic characterisation of Macrobrachium species in Cameroon. The SNPs identified in a previous characterization study were screened as viable candidates for the reduced panel. Starting from a full set of 1,814 SNPs, a total of 72 core SNPs were chosen using conventional approaches: allele frequency differentials, minor allele frequency profiles, and Wright's Fst statistics. The discriminatory power of reduced set of informative SNPs were then tested using the admixture analysis, principal component analysis, and discriminant analysis of principal components. The panel of prioritised SNP markers (i.e., N = 72 SNPs) distinguished Macrobrachium species with 100% accuracy. However, large sample size is needed to identify more informative SNPs for discriminating genetically closely related species, including M. macrobrachion versus M. vollenhovenii and M. sollaudii versus M. dux. Overall, the findings in this study show that we can accurately characterise Macrobrachium using a small set of core SNPs which could be useful for this economically important species in Cameroon. Given the results obtained in this study, a larger independent validation sample set will be needed to confirm the discriminative capacity of this SNP panel for wider commercial and research applications.


Assuntos
Palaemonidae , Polimorfismo de Nucleotídeo Único , Animais , Biomarcadores , Camarões , Água Doce , Genótipo , Palaemonidae/genética
3.
Front Cell Infect Microbiol ; 12: 789157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909976

RESUMO

Equine histoplasmosis commonly known as epizootic lymphangitis (EL) is a neglected granulomatous disease of equine that is endemic to Ethiopia. It is caused by Histoplasma capsulatum variety farciminosum, a dimorphic fungus that is closely related to H. capsulatum variety capsulatum. The objective of this study was to undertake a phylogenetic analysis of H. capsulatum isolated from EL cases of horses in central Ethiopia and evaluate their relationship with H. capsulatum isolates in other countries and/or clades using the internal transcribed spacer (ITS) region of rRNA genes. Clinical and mycological examinations, DNA extraction, polymerase chain reaction (PCR), Sanger sequencing, and phylogenetic analysis were used for undertaking this study. Additionally, sequence data of Histoplasma isolates were retrieved from GenBank and included for a comprehensive phylogenetic analysis. A total of 390 horses were screened for EL and 97 were positive clinically while H. capsulatum was isolated from 60 horses and further confirmed with PCR, of which 54 were sequenced. BLAST analysis of these 54 isolates identified 29 H. capsulatum isolates and 14 isolates from other fungal genera while the remaining 11 samples were deemed insufficient for further downstream analysis. The phylogenetic analysis identified five clades, namely, African, Eurasian, North American 1 and 2, and Latin American A and B. The Ethiopian isolates were closely aggregated with isolates of the Latin American A and Eurasian clades, whereas being distantly related to isolates from North American 1 and 2 clades as well as Latin American B clade. This study highlights the possible origins and transmission routes of Histoplasmosis in Ethiopia.


Assuntos
Histoplasmose , Animais , DNA Fúngico/genética , Etiópia/epidemiologia , Genes de RNAr , Histoplasma/genética , Histoplasmose/epidemiologia , Histoplasmose/genética , Histoplasmose/veterinária , Cavalos/genética , Filogenia
4.
Ann Appl Biol ; 180(2): 211-223, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35873878

RESUMO

Taro (Colocasia esculenta) and tannia (Xanthosoma sp.) plants growing in 25 districts across Ethiopia, Kenya, Tanzania and Uganda were surveyed for four RNA viruses. Leaf samples from 392 plants were tested for cucumber mosaic virus (CMV), dasheen mosaic virus (DsMV), taro vein chlorosis virus (TaVCV) and Colocasia bobone disease-associated virus (CBDaV) by RT-PCR. No samples tested positive for TaVCV or CBDaV, while CMV was only detected in three tannia samples with mosaic symptoms from Uganda. DsMV was detected in 40 samples, including 36 out of 171 from Ethiopia, one out of 94 from Uganda and three out of 41 from Tanzania, while none of the 86 samples from Kenya tested positive for any of the four viruses. The complete genomes of nine DsMV isolates from East Africa were cloned and sequenced. Phylogenetic analyses based on the amino acid sequence of the DsMV CP-coding region revealed two distinct clades. Isolates from Ethiopia were distributed in both clades, while samples from Uganda and Tanzania belong to different clades. Seven possible recombination events were identified from the analysis carried out on the available 15 full-length DsMV isolates. Nucleotide substitution ratio analysis revealed that all the DsMV genes are under strong negative selection pressure.

5.
Plant Dis ; 106(1): 39-45, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34279983

RESUMO

The Potyvirus Moroccan watermelon mosaic virus (MWMV) naturally infects and severely threatens production of cucurbits and papaya. In this study, we identified and characterized MWMV isolated from pumpkin (Cucurbita moschata) intercropped with MWMV-infected papaya plants through next-generation sequencing (NGS) and Sanger sequencing approaches. Complete MWMV genome sequences were obtained from two pumpkin samples through NGS and validated using Sanger sequencing. The isolates shared 83.4 to 83.7% nucleotide (nt) and 92.3 to 95.1% amino acid (aa) sequence identities in the coat protein and 79.5 to 79.9% nt and 89.2 to 89.7% aa identities in the polyprotein with papaya isolates of MWMV. Phylogenetic analysis using complete polyprotein nt sequences revealed the clustering of both pumpkin isolates of MWMV with corresponding sequences of cucurbit isolates of the virus from other parts of Africa and the Mediterranean regions, distinct from a clade formed by papaya isolates. Through sap inoculation, a pumpkin isolate of MWMV was pathogenic on zucchini (Cucurbita pepo), watermelon (Citrullus lanatus), and cucumber (Cucumis sativus) but not on papaya. Conversely, the papaya isolate of MWMV was nonpathogenic on pumpkin, watermelon, and cucumber, but it infected zucchini. The results suggest the occurrence of two strains of MWMV in Kenya having different biological characteristics associated with the host specificity.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Cucurbita , Potyvirus , Quênia , Filogenia , Doenças das Plantas , Potyvirus/genética
6.
Sci Rep ; 11(1): 14876, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290271

RESUMO

Meat from wildlife species (bushmeat) represents a major source of dietary protein in low- and middle-income countries where humans and wildlife live in close proximity. Despite the occurrence of zoonotic pathogens in wildlife, their prevalence in bushmeat remains unknown. To assess the risk of exposure to major pathogens in bushmeat, a total of 3784 samples, both fresh and processed, were collected from three major regions in Tanzania during both rainy and dry seasons, and were screened by real-time PCR for the presence of DNA signatures of Bacillus anthracis (B. anthracis), Brucella spp. (Brucella) and Coxiella burnetii (Coxiella). The analysis identified DNA signatures of B. anthracis (0.48%), Brucella (0.9%), and Coxiella (0.66%) in a total of 77 samples. Highest prevalence rates of B. anthracis, Brucella, and Coxiella were observed in wildebeest (56%), dik-dik (50%), and impala (24%), respectively. Fresh samples, those collected during the rainy season, and samples from Selous or Serengeti had a greater relative risk of being positive. Microbiome characterization identified Firmicutes and Proteobacteria as the most abundant phyla. The results highlight and define potential risks of exposure to endemic wildlife diseases from bushmeat and the need for future investigations to address the public health and emerging infectious disease risks associated with bushmeat harvesting, trade, and consumption.


Assuntos
Bacillus anthracis/genética , Zoonoses Bacterianas/microbiologia , Zoonoses Bacterianas/transmissão , Brucella/genética , Coxiella burnetii/genética , DNA Bacteriano/análise , Microbiologia de Alimentos , Carne/microbiologia , Animais , Animais Selvagens , Bacillus anthracis/isolamento & purificação , Zoonoses Bacterianas/prevenção & controle , Brucella/isolamento & purificação , Coxiella burnetii/isolamento & purificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Risco , Estações do Ano , Tanzânia
7.
Virus Res ; 286: 198081, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32663481

RESUMO

Maize is the most important food crop in Kenya accounting for more than 51 % of all staples grown in the country. Out of Kenya's 5.3 million ha total crops area, more than 2.1 million ha is occupied by maize which translates to 40 % of all crops area. However, with the emergence of maize lethal necrosis (MLN) disease in 2011, the average yields plummeted to all-time lows with severely affected counties recording 90-100% yield loss in 2013 and 2014. The disease is mainly caused by Maize chlorotic mottle virus (MCMV) in combination with Sugarcane mosaic virus (SCMV) or other potyviruses. In this study, a country-wide survey was carried out to assess the MLN causing viruses in Kenya, their distribution, genetic diversity, and recombination. The causative viruses of MLN were determined by RT-PCR using virus-specific primers and DAS-ELISA. Next-generation sequencing (NGS) data was generated, viral sequences identified, genetic diversity of MLN viruses was determined, and recombination was evaluated. MCMV and SCMV were detected in all the maize growing regions at varying levels of incidence, and severity while MaYMV, a polerovirus was detected in some samples through NGS. However, there were some samples in this study where only MCMV was detected with severe MLN symptoms. SCMV Sequences were highly diverse while MCMV sequences exhibited low variability. Potential recombination events were detected only in SCMV explaining the elevated level of diversity and associated risk of this virus in Kenya and the eastern Africa region.


Assuntos
Variação Genética , Genoma Viral , Doenças das Plantas/virologia , Potyvirus/genética , Tombusviridae/genética , Zea mays/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Quênia , Potyvirus/classificação , Potyvirus/isolamento & purificação , Recombinação Genética , Tombusviridae/classificação , Tombusviridae/isolamento & purificação
8.
Physiol Mol Plant Pathol ; 110: 101473, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32454559

RESUMO

Sweet potato feathery mottle virus is a potyvirus that infect sweet potato. The genome of the virus was analysed to understand genetic diversity, evolution and gene flow. Motifs, nucleotide identity and a phylogenetic tree were used to determine phylogroup of the isolates. Gene flow and genetic diversity were tested using DnaSP v.5. Codons evolution were tested using three methods embedded in Datamonkey. The results indicate occurrence of an isolate of phylogroup B within East Africa. Low genetic differentiation was observed between isolates from Kenya and Uganda indicating evidence of gene flow between the two countries. Four genes were found to have positively selected codons bordering or occurring within functional motifs. A motif within P1 gene evolved differently between phylogroup A and B. The evidence of gene flow indicates frequent exchange of the virus between the two countries and P1 gene motif provide a possible marker that can be used for mapping the distribution of the phylogroups.

9.
Biomed Res Int ; 2020: 2348560, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32382536

RESUMO

Analysis of shotgun metagenomic data generated from next generation sequencing platforms can be done through a variety of bioinformatic pipelines. These pipelines employ different sets of sophisticated bioinformatics algorithms which may affect the results of this analysis. In this study, we compared two commonly used pipelines for shotgun metagenomic analysis: MG-RAST and Kraken 2, in terms of taxonomic classification, diversity analysis, and usability using their primarily default parameters. Overall, the two pipelines detected similar abundance distributions in the three most abundant taxa Proteobacteria, Firmicutes, and Bacteroidetes. Within bacterial domain, 497 genera were identified by both pipelines, while an additional 694 and 98 genera were solely identified by Kraken 2 and MG-RAST, respectively. 933 species were detected by the two algorithms. Kraken 2 solely detected 3550 species, while MG-RAST identified 557 species uniquely. For archaea, Kraken 2 generated 105 and 236 genera and species, respectively, while MG-RAST detected 60 genera and 88 species. 54 genera and 72 species were commonly detected by the two methods. Kraken 2 had a quicker analysis time (~4 hours) while MG-RAST took approximately 2 days per sample. This study revealed that Kraken 2 and MG-RAST generate comparable results and that a reliable high-level overview of sample is generated irrespective of the pipeline selected. However, Kraken 2 generated a more accurate taxonomic identification given the higher number of "Unclassified" reads in MG-RAST. The observed variations at the genus level show that a main restriction is using different databases for classification of the metagenomic data. The results of this research indicate that a more inclusive and representative classification of microbiomes may be achieved through creation of the combined pipelines.


Assuntos
Archaea , Bactérias , Bovinos/microbiologia , Fezes/microbiologia , Metagenoma , Microbiota/genética , Animais , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biologia Computacional , Metagenômica
10.
Front Microbiol ; 11: 205, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194518

RESUMO

Carica papaya L. is an important fruit crop grown by small- and large-scale farmers in Kenya for local and export markets. However, its production is constrained by papaya ringspot disease (PRSD). The disease is believed to be caused by papaya ringspot virus (PRSV). Previous attempts to detect PRSV in papaya plants showing PRSD symptoms, using enzyme-linked immunosorbent assay (ELISA) and reverse transcriptase-polymerase chain reaction (RT-PCR) procedures with primers specific to PRSV, have not yielded conclusive results. Therefore, the nature of viruses responsible for PRSD was elucidated in papaya leaves collected from 22 counties through Illumina MiSeq next-generation sequencing (NGS) and validated by RT-PCR and Sanger sequencing. Viruses were detected in 38 out of the 48 leaf samples sequenced. Sequence analysis revealed the presence of four viruses: a Potyvirus named Moroccan watermelon mosaic virus (MWMV) and three viruses belonging to the genus Carlavirus. The Carlaviruses include cowpea mild mottle virus (CpMMV) and two putative Carlaviruses-closely related but distinct from cucumber vein-clearing virus (CuVCV) with amino acid and nucleotide sequence identities of 75.7-78.1 and 63.6-67.6%, respectively, in the coat protein genes. In reference to typical symptoms observed in the infected plants, the two putative Carlaviruses were named papaya mottle-associated virus (PaMV) and papaya mild mottle-associated virus (PaMMV). Surprisingly, and in contrast to previous studies conducted in other parts of world, PRSV was not detected. The majority of the viruses were detected as single viral infections, while a few were found to be infecting alongside another virus (for example, MWMV and PaMV). Furthermore, the NGS and RT-PCR analysis identified MWMV as being strongly associated with ringspot symptoms in infected papaya fruits. This study has provided the first complete genome sequences of these viruses isolated from papaya in Kenya, together with primers for their detection-thus proving to be an important step towards the design of long-term, sustainable disease management strategies.

11.
Sci Rep ; 9(1): 18086, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792246

RESUMO

Bushmeat, the meat and organs derived from wildlife species, is a common source of animal protein in the diets of those living in sub-Saharan Africa and is frequently associated with zoonotic spillover of dangerous pathogens. Given the frequent consumption of bushmeat in this region and the lack of knowledge about the microbial communities associated with this meat, the microbiome of 56 fresh and processed bushmeat samples ascertained from three districts in the Western Serengeti ecosystem in Tanzania was characterized using 16S rRNA metagenomic sequencing. The results show that the most abundant phyla present in bushmeat samples include Firmicutes (67.8%), Proteobacteria (18.4%), Cyanobacteria (8.9%), and Bacteroidetes (3.1%). Regardless of wildlife species, sample condition, season, or region, the microbiome is diverse across all samples, with no significant difference in alpha or beta diversity. The findings also suggest the presence of DNA signatures of potentially dangerous zoonotic pathogens, including those from the genus Bacillus, Brucella, Coxiella, and others, in bushmeat. Together, this investigation provides a better understanding of the microbiome associated with this major food source in samples collected from the Western Serengeti in Tanzania and highlights a need for future investigations on the potential health risks associated with the harvesting, trade, and consumption of bushmeat in Sub-Saharan Africa.


Assuntos
Animais Selvagens/microbiologia , Carne/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Ecossistema , Humanos , Carne/provisão & distribuição , Microbiota , RNA Ribossômico 16S/genética , Tanzânia , Zoonoses/etiologia , Zoonoses/microbiologia
12.
Pathogens ; 9(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861452

RESUMO

Sustainable control of plant diseases requires a good understanding of the epidemiological aspects such as the biology of the causal pathogens. In the current study, we used RT-PCR and Next Generation Sequencing (NGS) to contribute to the characterization of maize lethal necrotic (MLN) viruses and to identify other possible viruses that could represent a future threat in maize production in Tanzania. RT-PCR screening for Maize Chlorotic Mottle Virus (MCMV) detected the virus in the majority (97%) of the samples (n=223). Analysis of a subset (n=48) of the samples using NGS-Illumina Miseq detected MCMV and Sugarcane Mosaic Virus (SCMV) at a co-infection of 62%. The analysis further detected Maize streak virus with an 8% incidence in samples where MCMV and SCMV were also detected. In addition, signatures of Maize dwarf mosaic virus, Sorghum mosaic virus, Maize yellow dwarf virus-RMV and Barley yellow dwarf virus were detected with low coverage. Phylogenetic analysis of the viral coat protein showed that isolates of MCMV and SCMV were similar to those previously reported in East Africa and Hebei, China. Besides characterization, we used farmers' interviews and direct field observations to give insights into MLN status in different agro-ecological zones (AEZs) in Kilimanjaro, Mayara, and Arusha. Through the survey, we showed that the prevalence of MLN differed across regions (P = 0.0012) and villages (P < 0.0001) but not across AEZs (P > 0.05). The study shows changing MLN dynamicsin Tanzania and emphasizes the need for regional scientists to utilize farmers' awareness in managing the disease.

13.
Front Genet ; 10: 1003, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708964

RESUMO

Marine-protected areas (MPAs) have the potential to enhance fisheries through transport of larvae or by a net emigration of adult and juvenile fish to adjacent fished areas. A network of appropriately located MPAs will have the potential to reseed fished areas and other MPAs. Connectivity studies are therefore important to assess the effectiveness of a network of MPAs and to determine the spatial scale necessary for spillover effects. The principal aim of this study was to determine the potential for Kenyan MPAs to reseed adjacent fishing zones by evaluating the levels of genetic differentiation of populations of Lethrinus mahsena, a commercially important fish, along a continuum of protected and nonprotected sites. Fish samples were collected from MPAs (Mombasa and Kisite Mpunguti Marine Parks) and the fished reserves adjacent to the two MPAs. Total length and weight of the fish from the sites and fin clips from one of the pectoral fins were collected and preserved in 90% ethanol. Genomic profiles for each sample were obtained through genotyping by sequencing using diversity array technology markers. Results from population structure, diversity, and admixture analyses indicated very low genetic differentiation (F ST = 0.00184, P > 0.05) and low population substructure between samples obtained from the study locations implying a free exchange of fish across protected and nonprotected sites. There was a high gene flow and multidirectional migration rate among the sampling sites. Inbreeding was moderately high (F IS = 0.15, P < 0.05) in the marine parks, indicating high relatedness and probably limited mating options for the species due to small population size or spatial restriction. The lack of genetic differentiation between protected areas and open fishing grounds is indicative of genetic connectivity for the sky emperor. This reinforces the significance of maintaining protected areas to serve as breeding and spawning grounds of fish without adversely affecting the livelihoods of communities that depend on the various fisheries linked to MPAs.

14.
Gigascience ; 8(10)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31574156

RESUMO

BACKGROUND: The African eggplant (Solanum aethiopicum) is a nutritious traditional vegetable used in many African countries, including Uganda and Nigeria. It is thought to have been domesticated in Africa from its wild relative, Solanum anguivi. S. aethiopicum has been routinely used as a source of disease resistance genes for several Solanaceae crops, including Solanum melongena. A lack of genomic resources has meant that breeding of S. aethiopicum has lagged behind other vegetable crops. RESULTS: We assembled a 1.02-Gb draft genome of S. aethiopicum, which contained predominantly repetitive sequences (78.9%). We annotated 37,681 gene models, including 34,906 protein-coding genes. Expansion of disease resistance genes was observed via 2 rounds of amplification of long terminal repeat retrotransposons, which may have occurred ∼1.25 and 3.5 million years ago, respectively. By resequencing 65 S. aethiopicum and S. anguivi genotypes, 18,614,838 single-nucleotide polymorphisms were identified, of which 34,171 were located within disease resistance genes. Analysis of domestication and demographic history revealed active selection for genes involved in drought tolerance in both "Gilo" and "Shum" groups. A pan-genome of S. aethiopicum was assembled, containing 51,351 protein-coding genes; 7,069 of these genes were missing from the reference genome. CONCLUSIONS: The genome sequence of S. aethiopicum enhances our understanding of its biotic and abiotic resistance. The single-nucleotide polymorphisms identified are immediately available for use by breeders. The information provided here will accelerate selection and breeding of the African eggplant, as well as other crops within the Solanaceae family.


Assuntos
Genoma de Planta , Solanum/genética , Aclimatação/genética , Resistência à Doença/genética , Secas , Evolução Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , Retroelementos , Sequências Repetidas Terminais
15.
Genome Biol Evol ; 11(8): 2203-2207, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31364706

RESUMO

The maize stalk borer, Busseola fusca, is an important Lepidopteran pest of cereal crops in Central, East, and Southern Africa. Crop losses due to B. fusca feeding activity vary by region, but can result in total crop loss in areas with high levels of infestation. Genomic resources provide critical insight into the biology of pest species and can allow for the development of effective management tools and strategies to mitigate their impact on agriculture. To this end, we sequenced, assembled, and annotated the genome of B. fusca. The total assembled genome size was 492.9 Mb with 19,417 annotated protein-coding genes. Using a comparative approach, we identified a putative expansion in the Chorion gene family, which is involved in the formation of the egg shell structure. Our analysis revealed high repeat content within the B. fusca genome, with LTR sequences comprising the majority of the repetitive sequence. We hope genomic resources will provide a foundation for future work aimed at developing an integrated pest management strategy to reduce B. fusca's impact on food security.


Assuntos
Genoma de Inseto , Genômica/métodos , Proteínas de Insetos/genética , Mariposas/genética , Animais , Produtos Agrícolas , Regulação da Expressão Gênica , Herbivoria , Transcriptoma , Zea mays
16.
BMC Bioinformatics ; 20(1): 374, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31269897

RESUMO

BACKGROUND: One of the major challenges facing investigators in the microbiome field is turning large numbers of reads generated by next-generation sequencing (NGS) platforms into biological knowledge. Effective analytical workflows that guarantee reproducibility, repeatability, and result provenance are essential requirements of modern microbiome research. For nearly a decade, several state-of-the-art bioinformatics tools have been developed for understanding microbial communities living in a given sample. However, most of these tools are built with many functions that require an in-depth understanding of their implementation and the choice of additional tools for visualizing the final output. Furthermore, microbiome analysis can be time-consuming and may even require more advanced programming skills which some investigators may be lacking. RESULTS: We have developed a wrapper named iMAP (Integrated Microbiome Analysis Pipeline) to provide the microbiome research community with a user-friendly and portable tool that integrates bioinformatics analysis and data visualization. The iMAP tool wraps functionalities for metadata profiling, quality control of reads, sequence processing and classification, and diversity analysis of operational taxonomic units. This pipeline is also capable of generating web-based progress reports for enhancing an approach referred to as review-as-you-go (RAYG). For the most part, the profiling of microbial community is done using functionalities implemented in Mothur or QIIME2 platform. Also, it uses different R packages for graphics and R-markdown for generating progress reports. We have used a case study to demonstrate the application of the iMAP pipeline. CONCLUSIONS: The iMAP pipeline integrates several functionalities for better identification of microbial communities present in a given sample. The pipeline performs in-depth quality control that guarantees high-quality results and accurate conclusions. The vibrant visuals produced by the pipeline facilitate a better understanding of the complex and multidimensional microbiome data. The integrated RAYG approach enables the generation of web-based reports, which provides the investigators with the intermediate output that can be reviewed progressively. The intensively analyzed case study set a model for microbiome data analysis.


Assuntos
Microbiota , Software , Bactérias/classificação , Bactérias/genética , Sequência de Bases , Biologia Computacional/métodos , Filogenia , RNA Ribossômico 16S/química , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética
17.
Arch Virol ; 164(6): 1717-1721, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30900069

RESUMO

Next-generation sequencing of RNA extracted from a pumpkin plant with mosaic symptoms in Kenya identified the presence of a polerovirus sequence closely related to pepo aphid-borne yellows virus (PABYV). The near-complete polerovirus sequence comprised 5,810 nucleotides and contained seven putative open reading frames (ORFs) with a genome organisation typical of poleroviruses. BLASTp analysis of the translated sequences of ORFs 0, 1 and 2 revealed that their amino acid sequences differed by more than 10% from the corresponding protein sequences of other poleroviruses. These results suggest that this virus is a putative novel member of the genus Polerovirus, which has been provisionally named "pumpkin polerovirus" (PuPV).


Assuntos
Cucurbita/virologia , Luteoviridae/isolamento & purificação , Análise de Sequência de RNA/métodos , Tamanho do Genoma , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Quênia , Luteoviridae/genética , Fases de Leitura Aberta , Filogenia
18.
Ecol Evol ; 9(24): 14217-14233, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31938513

RESUMO

Macrobrachium (Bate, 1868) is a large and cosmopolitan crustacean genus of high economic importance worldwide. We investigated the morphological and molecular identification of freshwater prawns of the genus Macrobrachium in South, South West, and Littoral regions of Cameroon. A total of 1,566 specimens were examined morphologically using a key described by Konan (Diversité morphologique et génétique des crevettes des genres Atya Leach, 1816 et Macrobrachium Bate, 1868 de Côte d'Ivoire, 2009, Université d'Abobo Adjamé, Côte d'Ivoire), leading to the identification of seven species of Macrobrachium: M. vollenhovenii (Herklots, 1857); M. macrobrachion (Herklots, 1851); M. sollaudii (De Man, 1912); M. dux (Lenz, 1910); M. chevalieri (Roux, 1935); M. felicinum (Holthuis, 1949); and an undescribed Macrobrachium species M. sp. To validate the genetic basis of the identified species, 94 individuals representing the species were selected and subjected to genetic characterization using 1,814 DArT markers. The admixture analysis revealed four groups: M. vollenhovenii and M. macrobrachion; M. chevalieri; M. felicinum and M. sp; and M. dux and M. sollaudii. But, the principal component analysis (PCA) separated M. sp and M. felicinum to create additional group (i.e., five groups). Based on these findings, M. vollenhovenii and M. macrobrachion may be conspecific, as well as M. dux and M. sollaudii, while M. felicinum and M. sp seems to be different species, suggesting a potential conflict between the morphological identification key and the genetic basis underlying speciation and species allocation for Macrobrachium. These results are valuable in informing breeding design and genetic resource conservation programs for Macrobrachium in Africa.

19.
Mol Biol Rep ; 45(6): 1849-1862, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30168097

RESUMO

The stearoyl-CoA desaturase 1 (SCD1) A293V and acyl CoA: diacylglycerol acyltransferase 1 (DGAT1) K232A polymorphisms have been associated with significant variation in bovine milk fatty acid composition and unsaturation indices in western cattle breeds. This study aimed to estimate the milk fatty acid variability in indigenous Borgou and White Fulani cattle breeds of Benin, and the effects of the SCD1 A293V and DGAT1 K232A polymorphisms on milk and fatty acid composition and unsaturation indices. Thus, 85 Borgou and 96 White Fulani cows were genotyped for the SCD1 A293V and DGAT1 K232A polymorphisms and their milk and fatty acid composition and unsaturation indices were determined. Borgou presented milk with higher linoleic acid (P < 0.001), oleic acid (P < 0.05), C18 index (P < 0.001), total unsaturation index (P < 0.05), and lower total saturated fatty acid (SFA) compared to White Fulani. The SCD1 VV genotype was associated with higher protein and lactose contents in White Fulani (P < 0.05). In Borgou, the SCD1 AV genotype was associated with higher C14 and total unsaturation indices (P < 0.01), while the SCD1 V allele was associated with decrease in C14 index (P < 0.05). In White Fulani, the SCD1 VV genotype was associated with lower C18:1 cis-9 content (P < 0.05) while the DGAT1 K allele was associated with increased total SFA (P < 0.05), and decreased C18 index (P < 0.05), total unsaturation index (P < 0.01) and total monounsaturated fatty acid (P < 0.01). The SCD1 A293V and DGAT1 K232A may serve as genetic markers to improve milk fatty acid traits in Borgou and White Fulani breeds.


Assuntos
Diacilglicerol O-Aciltransferase/genética , Estearoil-CoA Dessaturase/genética , Alelos , Animais , Cruzamento/métodos , Bovinos/genética , Ácidos Graxos/genética , Feminino , Frequência do Gene/genética , Marcadores Genéticos , Variação Genética/genética , Genótipo , Leite/metabolismo , Fenótipo , Polimorfismo Genético/genética
20.
Virol J ; 15(1): 90, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29792207

RESUMO

BACKGROUND: Maize lethal necrosis is caused by a synergistic co-infection of Maize chlorotic mottle virus (MCMV) and a specific member of the Potyviridae, such as Sugarcane mosaic virus (SCMV), Wheat streak mosaic virus (WSMV) or Johnson grass mosaic virus (JGMV). Typical maize lethal necrosis symptoms include severe yellowing and leaf drying from the edges. In Kenya, we detected plants showing typical and atypical symptoms. Both groups of plants often tested negative for SCMV by ELISA. METHODS: We used next-generation sequencing to identify viruses associated to maize lethal necrosis in Kenya through a metagenomics analysis. Symptomatic and asymptomatic leaf samples were collected from maize and sorghum representing sixteen counties. RESULTS: Complete and partial genomes were assembled for MCMV, SCMV, Maize streak virus (MSV) and Maize yellow dwarf virus-RMV (MYDV-RMV). These four viruses (MCMV, SCMV, MSV and MYDV-RMV) were found together in 30 of 68 samples. A geographic analysis showed that these viruses are widely distributed in Kenya. Phylogenetic analyses of nucleotide sequences showed that MCMV, MYDV-RMV and MSV are similar to isolates from East Africa and other parts of the world. Single nucleotide polymorphism, nucleotide and polyprotein sequence alignments identified three genetically distinct groups of SCMV in Kenya. Variation mapped to sequences at the border of NIb and the coat protein. Partial genome sequences were obtained for other four potyviruses and one polerovirus. CONCLUSION: Our results uncover the complexity of the maize lethal necrosis epidemic in Kenya. MCMV, SCMV, MSV and MYDV-RMV are widely distributed and infect both maize and sorghum. SCMV population in Kenya is diverse and consists of numerous strains that are genetically different to isolates from other parts of the world. Several potyviruses, and possibly poleroviruses, are also involved.


Assuntos
Gammaherpesvirinae/genética , Genoma Viral , Luteoviridae/genética , Potyviridae/genética , Potyvirus/genética , Zea mays/virologia , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Mapeamento Cromossômico , Gammaherpesvirinae/classificação , Gammaherpesvirinae/isolamento & purificação , Gammaherpesvirinae/patogenicidade , Sequenciamento de Nucleotídeos em Larga Escala , Quênia , Luteoviridae/classificação , Luteoviridae/isolamento & purificação , Luteoviridae/patogenicidade , Metagenômica/métodos , Filogenia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Polimorfismo Genético , Potyviridae/classificação , Potyviridae/isolamento & purificação , Potyviridae/patogenicidade , Potyvirus/classificação , Potyvirus/isolamento & purificação , Potyvirus/patogenicidade , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sorghum/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA