Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cytoskeleton (Hoboken) ; 78(3): 97-110, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33993654

RESUMO

Charcot-Marie-Tooth disease (CMT) is one of the most common inherited neurological disorders and can be caused by mutations in over 100 different genes. One of the causative genes is NEFL on chromosome 8 which encodes neurofilament light protein (NEFL), one of five proteins that co-assemble to form neurofilaments. At least 34 different CMT-causing mutations in NEFL have been reported which span the head, rod, and tail domains of the protein. The majority of these mutations are inherited dominantly, but some are inherited recessively. The resulting disease is classified variably in clinical reports based on electrodiagnostic studies as either axonal (type 2; CMT2E), demyelinating (type 1; CMT1F), or a form intermediate between the two (dominant intermediate; DI-CMTG). In this article, we first present a brief introduction to CMT and neurofilaments. We then collate and analyze the data from the clinical literature on the disease classification, age of onset and electrodiagnostic test results for the various mutations. We find that mutations in the head, rod, and tail domains can all cause disease with early onset and profound neurological impairment, with a trend toward greater severity for head domain mutations. We also find that the disease classification does not correlate with specific mutation or domain. In fact, different individuals with the same mutation can be classified as having axonal, demyelinating, or dominant intermediate forms of the disease. This suggests that the classification of the disease as CMT2E, CMT1F or DI-CMTG has more to do with variable disease presentation than to differences in the underlying disease mechanism, which is most likely primarily axonal in all cases.


Assuntos
Doença de Charcot-Marie-Tooth , Doença de Charcot-Marie-Tooth/genética , Humanos , Filamentos Intermediários/genética , Mutação , Proteínas de Neurofilamentos/genética
2.
Cytoskeleton (Hoboken) ; 76(7-8): 423-439, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31574566

RESUMO

Charcot-Marie-Tooth disease Type 2E/1F (CMT2E/1F) is a peripheral neuropathy caused by mutations in neurofilament protein L (NFL), which is one of five neurofilament subunit proteins that co-assemble to form neurofilaments in vivo. Prior studies on cultured cells have shown that CMT2E/1F mutations disrupt neurofilament assembly and lead to protein aggregation, suggesting a possible disease mechanism. However, electron microscopy of axons in peripheral nerve biopsies from patients has revealed accumulations of neurofilament polymers of normal appearance and no evidence of protein aggregates. To reconcile these observations, we reexamined the assembly of seven CMT2E/1F NFL mutants in cultured cells. None of the mutants assembled into homopolymers in SW13vim- cells, but P8R, P22S, L268/269P, and P440/441L mutant NFL assembled into heteropolymers in the presence of neurofilament protein M (NFM) alone, and N98S, Q332/333P, and E396/397K mutant NFL assembled in the presence of NFM and peripherin. P8R, P22S, N98S, L268/269P, E396/397K, and P440/441L mutant NFL co-assembled into neurofilaments with endogenous NFL, NFM, and α-internexin in cultured neurons, although the N98S and E396/397K mutants showed reduced filament incorporation, and the Q332/333P mutant showed limited incorporation. We conclude that all the mutants are capable of assembling into neurofilaments, but for some of the mutants this was dependent on the identity of the other neurofilament proteins available for co-assembly, and most likely also their relative expression level. Thus, caution should be exercised when drawing conclusions about the assembly capacity of CMT2E/1F mutants based on transient transfections in cultured cells.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Proteínas Mutantes/metabolismo , Proteínas de Neurofilamentos/metabolismo , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA