Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am Surg ; 90(4): 902-910, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37983195

RESUMO

BACKGROUND: Traumatic thoracolumbar spine injuries are associated with significant morbidity and mortality. Targeted for non-spine specialist trauma surgeons, this systematic scoping review aimed to examine literature for up-to-date evidence on presentation, management, and outcomes of thoracolumbar spine injuries in adult trauma patients. METHODS: This review was reported using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist. We searched four bibliographic databases: PubMed, EMBASE, Web of Science, and the Cochrane Library. Eligible studies included experimental, observational, and evidence-synthesis articles evaluating patients with thoracic, lumbar, or thoracolumbar spine injury, published in English between January 1, 2010 and January 31, 2021. Studies which focused on animals, cadavers, cohorts with N <30, and pediatric cohorts (age <18 years old), as well as case studies, abstracts, and commentaries were excluded. RESULTS: A total of 2501 studies were screened, of which 326 unique studies were fully text reviewed and twelve aspects of injury management were identified and discussed: injury patterns, determination of injury status and imaging options, considerations in management, and patient quality of life. We found: (1) imaging is a necessary diagnostic tool, (2) no consensus exists for preferred injury characterization scoring systems, (3) operative management should be considered for unstable fractures, decompression, and deformity, and (4) certain patients experience significant burden following injury. DISCUSSION: In this systematic scoping review, we present the most up-to-date information regarding the management of traumatic thoracolumbar spine injuries. This allows non-specialist trauma surgeons to become more familiar with thoracolumbar spine injuries in trauma patients and provides a framework for their management.


Assuntos
Região Lombossacral , Traumatismos Torácicos , Adulto , Humanos , Região Lombossacral/lesões , Região Lombossacral/cirurgia , Traumatismos Torácicos/cirurgia
2.
Alzheimers Res Ther ; 15(1): 201, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968719

RESUMO

BACKGROUND: Progression of Alzheimer's disease leads to synapse loss, neural network dysfunction and cognitive failure. Accumulation of protein aggregates and brain immune activation have triggering roles in synaptic failure but the neuronal mechanisms underlying synapse loss are unclear. On the neuronal surface, cellular prion protein (PrPC) is known to be a high-affinity binding site for Amyloid-ß oligomers (Aßo). However, PrPC's dependence in knock-in AD models for tau accumulation, transcriptomic alterations and imaging biomarkers is unknown. METHODS: The necessity of PrPC was examined as a function of age in homozygous AppNL-G-F/hMapt double knock-in mice (DKI). Phenotypes of AppNL-G-F/hMapt mice with a deletion of Prnp expression (DKI; Prnp-/-) were compared with DKI mice with intact Prnp, mice with a targeted deletion of Prnp (Prnp-/-), and mice with intact Prnp (WT). Phenotypes examined included behavioral deficits, synapse loss by PET imaging, synapse loss by immunohistology, tau pathology, gliosis, inflammatory markers, and snRNA-seq transcriptomic profiling. RESULTS: By 9 months age, DKI mice showed learning and memory impairment, but DKI; Prnp-/- and Prnp-/- groups were indistinguishable from WT. Synapse loss in DKI brain, measured by [18F]SynVesT-1 SV2A PET or anti-SV2A immunohistology, was prevented by Prnp deletion. Accumulation of Tau phosphorylated at aa 217 and 202/205, C1q tagging of synapses, and dystrophic neurites were all increased in DKI mice but each decreased to WT levels with Prnp deletion. In contrast, astrogliosis, microgliosis and Aß levels were unchanged between DKI and DKI; Prnp-/- groups. Single-nuclei transcriptomics revealed differential expression in neurons and glia of DKI mice relative to WT. For DKI; Prnp-/- mice, the majority of neuronal genes differentially expressed in DKI mice were no longer significantly altered relative to WT, but most glial DKI-dependent gene expression changes persisted. The DKI-dependent neuronal genes corrected by Prnp deletion associated bioinformatically with synaptic function. Additional genes were uniquely altered only in the Prnp-/- or the DKI; Prnp-/- groups. CONCLUSIONS: Thus, PrPC-dependent synapse loss, phospho-tau accumulation and neuronal gene expression in AD mice can be reversed without clearing Aß plaque or preventing gliotic reaction. This supports targeting the Aßo-PrPC interaction to prevent Aßo-neurotoxicity and pathologic tau accumulation in AD.


Assuntos
Doença de Alzheimer , Príons , Camundongos , Animais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Proteínas Priônicas/genética , Transcriptoma , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Príons/metabolismo , Sinapses/patologia , Neurônios/metabolismo , Modelos Animais de Doenças , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Sci Transl Med ; 14(647): eabi8593, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35648810

RESUMO

Microglia-mediated synaptic loss contributes to the development of cognitive impairments in Alzheimer's disease (AD). However, the basis for this immune-mediated attack on synapses remains to be elucidated. Treatment with the metabotropic glutamate receptor 5 (mGluR5) silent allosteric modulator (SAM), BMS-984923, prevents ß-amyloid oligomer-induced aberrant synaptic signaling while preserving physiological glutamate response. Here, we show that oral BMS-984923 effectively occupies brain mGluR5 sites visualized by [18F]FPEB positron emission tomography (PET) at doses shown to be safe in rodents and nonhuman primates. In aged mouse models of AD (APPswe/PS1ΔE9 overexpressing transgenic and AppNL-G-F/hMapt double knock-in), SAM treatment fully restored synaptic density as measured by [18F]SynVesT-1 PET for SV2A and by histology, and the therapeutic benefit persisted after drug washout. Phospho-TAU accumulation in double knock-in mice was also reduced by SAM treatment. Single-nuclei transcriptomics demonstrated that SAM treatment in both models normalized expression patterns to a far greater extent in neurons than glia. Last, treatment prevented synaptic localization of the complement component C1Q and synaptic engulfment in AD mice. Thus, selective modulation of mGluR5 reversed neuronal gene expression changes to protect synapses from damage by microglial mediators in rodents.


Assuntos
Doença de Alzheimer , Receptor de Glutamato Metabotrópico 5 , Doença de Alzheimer/patologia , Animais , Complemento C1q/metabolismo , Complemento C1q/uso terapêutico , Modelos Animais de Doenças , Camundongos , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptor de Glutamato Metabotrópico 5/uso terapêutico , Sinapses/metabolismo
4.
Ann Clin Transl Neurol ; 6(3): 554-574, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30911579

RESUMO

Objective: Amyloid-beta oligomers (Aßo) trigger the development of Alzheimer's disease (AD) pathophysiology. Cellular prion protein (PrPC) initiates synaptic damage as a high affinity receptor for Aßo. Here, we evaluated the preclinical therapeutic efficacy of a fully human monoclonal antibody against PrPC. This AZ59 antibody selectively targets the Aßo binding site in the amino-terminal unstructured domain of PrPC to avoid any potential risk of direct toxicity. Methods: Potency of AZ59 was evaluated by binding to PrPC, blockade of Aßo interaction and interruption of Aßo signaling. AZ59 was administered to mice by weekly intraperitoneal dosing and brain antibody measured. APP/PS1 transgenic mice were treated with AZ59 and assessed by memory tests, by brain biochemistry and by histochemistry for Aß, gliosis and synaptic density. Results: AZ59 binds PrPC with 100 pmol/L affinity and blocks human brain Aßo binding to PrPC, as well as prevents synaptotoxic signaling. Weekly i.p. dosing of 20 mg/kg AZ59 in a murine form achieves trough brain antibody levels greater than 10 nmol/L. Aged symptomatic APP/PS1 transgenic mice treated with AZ59 for 5-7 weeks show a full rescue of behavioral and synaptic loss phenotypes. This recovery occurs without clearance of plaque pathology or elimination of gliosis. AZ59 treatment also normalizes synaptic signaling abnormalities in transgenic brain. These benefits are dose-dependent and persist for at least 1 month after the last dose. Interpretation: Preclinical data demonstrate that systemic AZ59 therapy rescues central synapses and memory function from transgenic Alzheimer's disease pathology, supporting a disease-modifying therapeutic potential.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Anticorpos Monoclonais/uso terapêutico , Proteínas PrPC/antagonistas & inibidores , Proteínas PrPC/imunologia , Peptídeos beta-Amiloides/metabolismo , Animais , Sítios de Ligação , Encéfalo/patologia , Células COS , Chlorocebus aethiops , Cognição , Modelos Animais de Doenças , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais , Sinapses/patologia
6.
Cell Rep ; 26(1): 145-158.e8, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30605671

RESUMO

Cellular prion protein (PrPC) binds the scrapie conformation of PrP (PrPSc) and oligomeric ß-amyloid peptide (Aßo) to mediate transmissible spongiform encephalopathy (TSE) and Alzheimer's disease (AD), respectively. We conducted cellular and biochemical screens for compounds blocking PrPC interaction with Aßo. A polymeric degradant of an antibiotic targets Aßo binding sites on PrPC with low nanomolar affinity and prevents Aßo-induced pathophysiology. We then identified a range of negatively charged polymers with specific PrPC affinity in the low to sub-nanomolar range, from both biological (melanin) and synthetic (poly [4-styrenesulfonic acid-co-maleic acid], PSCMA) origin. Association of PSCMA with PrPC prevents Aßo/PrPC-hydrogel formation, blocks Aßo binding to neurons, and abrogates PrPSc production by ScN2a cells. We show that oral PSCMA yields effective brain concentrations and rescues APPswe/PS1ΔE9 transgenic mice from AD-related synapse loss and memory deficits. Thus, an orally active PrPC-directed polymeric agent provides a potential therapeutic approach to address neurodegeneration in AD and TSE.


Assuntos
Doença de Alzheimer/fisiopatologia , Proteínas Priônicas/antagonistas & inibidores , Animais , Camundongos , Camundongos Transgênicos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA