Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Ambio ; 53(4): 604-623, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38315413

RESUMO

Landscape fires are usually not associated with temperate Europe, yet not all temperate countries record statistics indicating that actual risks remain unknown. Here we introduce new wildfire statistics for The Netherlands, and summarize significant events and fatalities. The period 2017-2022 saw 611 wildfires and 405 ha burned per year, which Copernicus' European Forest Fire Information System satellite data vastly underestimate. Fires burned more heathland than forest, were small (mean fire size 1.5 ha), were caused by people, and often burned simultaneously, in Spring and in Summer drought. Suppression, restoration and traffic delays cost 3 M€ year-1. Dozens of significant events illustrate fire has never been away and has major societal impact amidst grave concerns for firefighter safety. Since 1833, 31 fatalities were reported. A legal framework is needed to ensure continuity of recordkeeping, as the core foundation of integrated fire management, to create a baseline for climate change, and to fulfill international reporting requirements.


Assuntos
Incêndios , Incêndios Florestais , Humanos , Países Baixos , Florestas , Europa (Continente)
3.
Ambio ; 52(10): 1592-1602, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37389758

RESUMO

The concept of fire resilience has become increasingly relevant as society looks to understand and respond to recent wildfire events. In particular, the idea of a 'fire resilient landscape' is one which has been utilised to explore how society can coexist with wildfires. However, the concept of fire resilient landscapes has often been approached in silos, either from an environmental or social perspective; no integrated definition exists. Based on a synthesis of literature and a survey of scientists and practitioners, we propose to define a fire resilient landscape as 'a socio-ecological system that accepts the presence of fire, whilst preventing significant losses through landscape management, community engagement and effective recovery.' This common definition could help guide policy surrounding fire resilient landscapes, and exemplify how such landscapes could be initiated in practice. We explore the applicability of the proposed definition in both Mediterranean and temperate Europe.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Europa (Continente) , Inquéritos e Questionários , Florestas
4.
Nat Commun ; 14(1): 427, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702835

RESUMO

Climate teleconnections (CT) remotely influence weather conditions in many regions on Earth, entailing changes in primary drivers of fire activity such as vegetation biomass accumulation and moisture. We reveal significant relationships between the main global CTs and burned area that vary across and within continents and biomes according to both synchronous and lagged signals, and marked regional patterns. Overall, CTs modulate 52.9% of global burned area, the Tropical North Atlantic mode being the most relevant CT. Here, we summarized the CT-fire relationships into a set of six global CT domains that are discussed by continent, considering the underlying mechanisms relating weather patterns and vegetation types with burned area across the different world's biomes. Our findings highlight the regional CT-fire relationships worldwide, aiming to further support fire management and policy-making.


Assuntos
Clima , Incêndios , Ecossistema , Tempo (Meteorologia) , Biomassa , Mudança Climática
5.
Hydrol Process ; 35(5): e14086, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34248273

RESUMO

2020 is the year of wildfire records. California experienced its three largest fires early in its fire season. The Pantanal, the largest wetland on the planet, burned over 20% of its surface. More than 18 million hectares of forest and bushland burned during the 2019-2020 fire season in Australia, killing 33 people, destroying nearly 2500 homes, and endangering many endemic species. The direct cost of damages is being counted in dozens of billion dollars, but the indirect costs on water-related ecosystem services and benefits could be equally expensive, with impacts lasting for decades. In Australia, the extreme precipitation ("200 mm day -1 in several location") that interrupted the catastrophic wildfire season triggered a series of watershed effects from headwaters to areas downstream. The increased runoff and erosion from burned areas disrupted water supplies in several locations. These post-fire watershed hazards via source water contamination, flash floods, and mudslides can represent substantial, systemic long-term risks to drinking water production, aquatic life, and socio-economic activity. Scenarios similar to the recent event in Australia are now predicted to unfold in the Western USA. This is a new reality that societies will have to live with as uncharted fire activity, water crises, and widespread human footprint collide all-around of the world. Therefore, we advocate for a more proactive approach to wildfire-watershed risk governance in an effort to advance and protect water security. We also argue that there is no easy solution to reducing this risk and that investments in both green (i.e., natural) and grey (i.e., built) infrastructure will be necessary. Further, we propose strategies to combine modern data analytics with existing tools for use by water and land managers worldwide to leverage several decades worth of data and knowledge on post-fire hydrology.

6.
Artigo em Inglês | MEDLINE | ID: mdl-27216512

RESUMO

Fire has been used for centuries to generate and manage some of the UK's cultural landscapes. Despite its complex role in the ecology of UK peatlands and moorlands, there has been a trend of simplifying the narrative around burning to present it as an only ecologically damaging practice. That fire modifies peatland characteristics at a range of scales is clearly understood. Whether these changes are perceived as positive or negative depends upon how trade-offs are made between ecosystem services and the spatial and temporal scales of concern. Here we explore the complex interactions and trade-offs in peatland fire management, evaluating the benefits and costs of managed fire as they are currently understood. We highlight the need for (i) distinguishing between the impacts of fires occurring with differing severity and frequency, and (ii) improved characterization of ecosystem health that incorporates the response and recovery of peatlands to fire. We also explore how recent research has been contextualized within both scientific publications and the wider media and how this can influence non-specialist perceptions. We emphasize the need for an informed, unbiased debate on fire as an ecological management tool that is separated from other aspects of moorland management and from political and economic opinions.This article is part of the themed issue 'The interaction of fire and mankind'.


Assuntos
Conservação dos Recursos Naturais/métodos , Incêndios , Áreas Alagadas , Conservação dos Recursos Naturais/legislação & jurisprudência , Reino Unido
8.
Environ Sci Technol ; 48(14): 8266-74, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24905470

RESUMO

Hydraulic fracturing is expanding rapidly in the US to meet increasing energy demand and requires high volumes of hydrofracking fluid to displace natural gas from shale. Accidental spills and deliberate land application of hydrofracking fluids, which return to the surface during hydrofracking, are common causes of environmental contamination. Since the chemistry of hydrofracking fluids favors transport of colloids and mineral particles through rock cracks, it may also facilitate transport of in situ colloids and associated pollutants in unsaturated soils. We investigated this by subsequently injecting deionized water and flowback fluid at increasing flow rates into unsaturated sand columns containing colloids. Colloid retention and mobilization was measured in the column effluent and visualized in situ with bright field microscopy. While <5% of initial colloids were released by flushing with deionized water, 32-36% were released by flushing with flowback fluid in two distinct breakthrough peaks. These peaks resulted from 1) surface tension reduction and steric repulsion and 2) slow kinetic disaggregation of colloid flocs. Increasing the flow rate of the flowback fluid mobilized an additional 36% of colloids, due to the expansion of water filled pore space. This study suggests that hydrofracking fluid may also indirectly contaminate groundwater by remobilizing existing colloidal pollutants.


Assuntos
Coloides/análise , Coloides/química , Fontes Geradoras de Energia , Água/química , Cloretos/análise , Microscopia , Reologia , Dióxido de Silício/química , Solo , Soluções
9.
Environ Sci Technol ; 47(15): 8256-64, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23805840

RESUMO

The prediction of colloid transport in unsaturated porous media in the presence of large energy barrier is hampered by scant information of the proportional retention by straining and attractive interactions at surface energy minima. This study aims to fill this gap by performing saturated and unsaturated column experiments in which colloid pulses were added at various ionic strengths (ISs) from 0.1 to 50 mM. Subsequent flushing with deionized water released colloids held at the secondary minimum. Next, destruction of the column freed colloids held by straining. Colloids not recovered at the end of the experiment were quantified as retained at the primary minimum. Results showed that net colloid retention increased with IS and was independent of saturation degree under identical IS and Darcian velocity. Attachment rates were greater in unsaturated columns, despite an over 3-fold increase in pore water velocity relative to saturated columns, because additional retention at the readily available air-associated interfaces (e.g., the air-water-solid [AWS] interfaces) is highly efficient. Complementary visual data showed heavy retention at the AWS interfaces. Retention by secondary minima ranged between 8% and 46% as IS increased, and was greater for saturated conditions. Straining accounted for an average of 57% of the retained colloids with insignificant differences among the treatments. Finally, retention by primary minima ranged between 14% and 35% with increasing IS, and was greater for unsaturated conditions due to capillary pinning.


Assuntos
Coloides , Ensaio de Desvio de Mobilidade Eletroforética , Cinética , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA