Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 26: 101279, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31349119

RESUMO

The phagocyte NADPH oxidase (the NOX2 complex) generates superoxide, the precursor to reactive oxygen species (ROS). ROS possess both antimicrobial and immunoregulatory function. Inactivating mutations in alleles of the NOX2 complex cause chronic granulomatous disease (CGD), characterized by an enhanced susceptibility to infections and autoimmune diseases such as Systemic lupus erythematosus (SLE). The latter is characterized by insufficient removal of dead cells, resulting in an autoimmune response against components of the cell's nucleus when non-cleared apoptotic cells lose their membrane integrity and present autoantigenic molecules in an inflammatory context. Here we aimed to shed light on the role of the NOX2 complex in handling of secondary necrotic cells (SNECs) and associated consequences for inflammation and autoimmunity during lupus. We show that individuals with SLE and CGD display accumulation of SNECs in blood monocytes and neutrophils. In a CGD phenotypic mouse strain (Ncf1** mice) build-up of SNECs in Ly6CHI blood monocytes was connected with a delayed degradation of the phagosomal cargo and accompanied by production of inflammatory mediators. Treatment with H2O2 or activators of ROS-formation reconstituted phagosomal abundance of SNECs to normal levels. Induction of experimental lupus further induced increased antibody-dependent uptake of SNECs into neutrophils. Lupus-primed Ncf1** neutrophils took up more SNECs than wild type neutrophils, whereas SNEC-accumulation in regulatory Ly6C-/LO monocytes was lower in Ncf1**mice. We deduce that the inflammatory rerouting of immune-stimulatory necrotic material into inflammatory phagocyte subsets contributes to the connection between low ROS production by the NOX2 complex and SLE.


Assuntos
NADPH Oxidase 2/metabolismo , Fagócitos/metabolismo , Animais , Autoanticorpos/imunologia , Citocinas/metabolismo , Concentração de Íons de Hidrogênio , Mediadores da Inflamação/metabolismo , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , NADPH Oxidase 2/genética , Necrose/genética , Necrose/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagócitos/imunologia , Fagocitose/genética , Fagocitose/imunologia , Fagossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de IgG/metabolismo
2.
JCI Insight ; 2(10)2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28515366

RESUMO

Many effector mechanisms of neutrophils have been implicated in the pathogenesis of systemic lupus erythematosus (SLE). Neutrophil extracellular traps (NETs) have been assigned a particularly detrimental role. Here we investigated the functional impact of neutrophils and NETs on a mouse model of lupus triggered by intraperitoneal injection of the cell death-inducing alkane pristane. Pristane-induced lupus (PIL) was aggravated in 2 mouse strains with impaired induction of NET formation, i.e., NOX2-deficient (Ncf1-mutated) and peptidyl arginine deiminase 4-deficient (PAD4-deficient) mice, as seen from elevated levels of antinuclear autoantibodies (ANAs) and exacerbated glomerulonephritis. We observed a dramatically reduced ability to form pristane-induced NETs in vivo in both Ncf1-mutated and PAD4-deficient mice, accompanied by higher levels of inflammatory mediators in the peritoneum. Similarly, neutropenic Mcl-1ΔMyelo mice exhibited higher levels of ANAs, which indicates a regulatory function in lupus of NETs and neutrophils. Blood neutrophils from Ncf1-mutated and human individuals with SLE exhibited exuberant spontaneous NET formation. Treatment with specific chemical NOX2 activators induced NET formation and ameliorated PIL. Our findings suggest that aberrant NET is one of the factors promoting experimental lupus-like autoimmunity by uncontrolled release of inflammatory mediators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA