Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37317294

RESUMO

Lactococcus garvieae is the etiological agent of lactococcosis, a clinically and economically significant infectious disease affecting farmed rainbow trout. L. garvieae had been considered the only cause of lactococcosis for a long time; however, L. petauri, another species of the genus Lactococcus, has lately been linked to the same disease. The genomes and biochemical profiles of L. petauri and L. garvieae have a high degree of similarity. Traditional diagnostic tests currently available cannot distinguish between these two species. The aim of this study was to use the transcribed spacer (ITS) region between 16S rRNA and 23S rRNA as a potential useful molecular target to differentiate L. garvieae from L. petauri, saving time and money compared to genomics methods currently used as diagnostic tools for accurate discrimination between these two species. The ITS region of 82 strains was amplified and sequenced. The amplified fragments varied in size from 500 to 550 bp. Based on the sequence, seven SNPs were identified that separate L. garvieae from L. petauri. The 16S-23S rRNA ITS region has enough resolution to distinguish between closely related L. garvieae and L. petauri and it can be used as a diagnostic marker to quickly identify the pathogens in a lactococcosis outbreak.

2.
Animals (Basel) ; 12(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077896

RESUMO

Infectious diseases place an economic burden on aquaculture and a limitation to its growth. An innovative approach to mitigate their impact on production is breeding for disease resistance: selection for domestication, family-based selection, marker-assisted selection, and more recently, genomic selection. Advances in genetics and genomics approaches to the control of infectious diseases are key to increasing aquaculture efficiency, profitability, and sustainability and to reducing its environmental footprint. Interaction and co-evolution between a host and pathogen can, however, turn breeding to boost infectious disease resistance into a potential driver of pathogenic change. Parallel molecular characterization of the pathogen and its virulence and antimicrobial resistance genes is therefore essential to understand pathogen evolution over time in response to host immunity, and to apply appropriate mitigation strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA