Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Pflugers Arch ; 475(11): 1283-1300, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37700120

RESUMO

Fluorescent dyes and genetically encoded fluorescence indicators (GEFI) are common tools for visualizing concentration changes of specific ions and messenger molecules during intra- as well as intercellular communication. Using advanced imaging technologies, fluorescence indicators are a prerequisite for the analysis of physiological molecular signaling. Automated detection and analysis of fluorescence signals require to overcome several challenges, including correct estimation of fluorescence fluctuations at basal concentrations of messenger molecules, detection, and extraction of events themselves as well as proper segmentation of neighboring events. Moreover, event detection algorithms need to be sensitive enough to accurately capture localized and low amplitude events exhibiting a limited spatial extent. Here, we present two algorithms (PBasE and CoRoDe) for accurate baseline estimation and automated detection and segmentation of fluorescence fluctuations.

2.
Front Mol Neurosci ; 15: 840948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431801

RESUMO

The spinal cord is the main pathway connecting brain and peripheral nervous system. Its functionality relies on the orchestrated activity of both neurons and glial cells. To date, most advancement in understanding the spinal cord inner mechanisms has been made either by in vivo exposure of its dorsal surface through laminectomy or by acute ex vivo slice preparation, likely affecting spinal cord physiology in virtue of the necessary extensive manipulation of the spinal cord tissue. This is especially true of cells immediately responding to alterations of the surrounding environment, such as microglia and astrocytes, reacting within seconds or minutes and for up to several days after the original insult. Ca2+ signaling is considered one of the most immediate, versatile, and yet elusive cellular responses of glia. Here, we induced the cell-specific expression of the genetically encoded Ca2+ indicator GCaMP3 to evaluate spontaneous intracellular Ca2+ signaling in astrocytes and microglia. Ca2+ signals were then characterized in acute ex vivo (both gray and white matter) as well as in chronic in vivo (white matter) preparations using MSparkles, a MATLAB-based software for automatic detection and analysis of fluorescence events. As a result, we were able to segregate distinct astroglial and microglial Ca2+ signaling patterns along with method-specific Ca2+ signaling alterations, which must be taken into consideration in the reliable evaluation of any result obtained in physiological as well as pathological conditions. Our study revealed a high degree of Ca2+ signaling diversity in glial cells of the murine spinal cord, thus adding to the current knowledge of the astonishing glial heterogeneity and cell-specific Ca2+ dynamics in non-neuronal networks.

3.
Glia ; 69(12): 2798-2811, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34388285

RESUMO

Recent achievements in indicator optimization and imaging techniques promote the advancement of functional imaging to decipher complex signaling processes in living cells, such as Ca2+ activity patterns. Astrocytes are important regulators of the brain network and well known for their highly complex morphology and spontaneous Ca2+ activity. However, the astrocyte community is lacking standardized methods to analyze and interpret Ca2+ activity recordings, hindering global comparisons. Here, we present a biophysically-based analytical concept for deciphering the complex spatio-temporal changes of Ca2+ biosensor fluorescence for understanding the underlying signaling mechanisms. We developed a pixel-based multi-threshold event detection (MTED) analysis of multidimensional data, which accounts for signal strength as an additional signaling dimension and provides the experimenter with a comprehensive toolbox for a differentiated and in-depth characterization of fluorescence signals. MTED was validated by analyzing astrocytic Ca2+ activity across Ca2+ indicators, imaging setups, and model systems from primary cell culture to awake, head-fixed mice. We identified extended Ca2+ activity at 25°C compared to 37°C physiological body temperature and dissected how neuronal activity shapes long-lasting astrocytic Ca2+ activity. Our MTED strategy, as a parameter-free approach, is easily transferrable to other fluorescent indicators and biosensors and embraces the additional dimensionality of signaling activity strength. It will also advance the definition of standardized procedures and parameters to improve comparability of research data and reports.


Assuntos
Astrócitos , Sinalização do Cálcio , Animais , Astrócitos/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Camundongos , Neurônios/metabolismo
4.
Front Cell Neurosci ; 15: 720675, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447299

RESUMO

Understanding and modulating CNS function in physiological as well as pathophysiological contexts remains a significant ambition in research and clinical applications. The investigation of the multifaceted CNS cell types including their interactions and contributions to neural function requires a combination of the state-of-the-art in vivo electrophysiology and imaging techniques. We developed a novel type of liquid crystal polymer (LCP) surface micro-electrode manufactured in three customized designs with up to 16 channels for recording and stimulation of brain activity. All designs include spare central spaces for simultaneous 2P-imaging. Nanoporous platinum-plated contact sites ensure a low impedance and high current transfer. The epidural implantation of the LCP micro-electrodes could be combined with standard cranial window surgery. The epidurally positioned electrodes did not only display long-term biocompatibility, but we also observed an additional stabilization of the underlying CNS tissue. We demonstrate the electrode's versatility in combination with in vivo 2P-imaging by monitoring anesthesia-awake cycles of transgenic mice with GCaMP3 expression in neurons or astrocytes. Cortical stimulation and simultaneous 2P Ca2+ imaging in neurons or astrocytes highlighted the astrocytes' integrative character in neuronal activity processing. Furthermore, we confirmed that spontaneous astroglial Ca2+ signals are dampened under anesthesia, while evoked signals in neurons and astrocytes showed stronger dependency on stimulation intensity rather than on various levels of anesthesia. Finally, we show that the electrodes provide recordings of the electrocorticogram (ECoG) with a high signal-to noise ratio and spatial signal differences which help to decipher brain activity states during experimental procedures. Summarizing, the novel LCP surface micro-electrode is a versatile, convenient, and reliable tool to investigate brain function in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA