Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Sensors (Basel) ; 20(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532117

RESUMO

Contrary to its daytime counterpart, nighttime visible and near infrared (VIS/NIR) satellite imagery is limited in both spectral and spatial resolution. Nevertheless, the relevance of such systems is unquestioned with applications to, e.g., examine urban areas, derive light pollution, and estimate energy consumption. To determine optimal spectral bands together with required radiometric and spatial resolution, at-sensor radiances are simulated based on combinations of lamp spectra with typical luminances according to lighting standards, surface reflectances, and radiative transfers for the consideration of atmospheric effects. Various band combinations are evaluated for their ability to differentiate between lighting types and to estimate the important lighting parameters: efficacy to produce visible light, percentage of emissions attributable to the blue part of the spectrum, and assessment of the perceived color of radiation sources. The selected bands are located in the green, blue, yellow-orange, near infrared, and red parts of the spectrum and include one panchromatic band. However, these nighttime bands tailored to artificial light emissions differ significantly from the typical daytime bands focusing on surface reflectances. Compared to existing or proposed nighttime or daytime satellites, the recommended characteristics improve, e.g., classification of lighting types by >10%. The simulations illustrate the feasible improvements in nocturnal VIS/NIR remote sensing which will lead to advanced applications.

3.
Sensors (Basel) ; 17(7)2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28671575

RESUMO

This paper describes the concept of the hyperspectral Earth-observing thermal infrared (TIR) satellite mission HiTeSEM (High-resolution Temperature and Spectral Emissivity Mapping). The scientific goal is to measure specific key variables from the biosphere, hydrosphere, pedosphere, and geosphere related to two global problems of significant societal relevance: food security and human health. The key variables comprise land and sea surface radiation temperature and emissivity, surface moisture, thermal inertia, evapotranspiration, soil minerals and grain size components, soil organic carbon, plant physiological variables, and heat fluxes. The retrieval of this information requires a TIR imaging system with adequate spatial and spectral resolutions and with day-night following observation capability. Another challenge is the monitoring of temporally high dynamic features like energy fluxes, which require adequate revisit time. The suggested solution is a sensor pointing concept to allow high revisit times for selected target regions (1-5 days at off-nadir). At the same time, global observations in the nadir direction are guaranteed with a lower temporal repeat cycle (>1 month). To account for the demand of a high spatial resolution for complex targets, it is suggested to combine in one optic (1) a hyperspectral TIR system with ~75 bands at 7.2-12.5 µm (instrument NEDT 0.05 K-0.1 K) and a ground sampling distance (GSD) of 60 m, and (2) a panchromatic high-resolution TIR-imager with two channels (8.0-10.25 µm and 10.25-12.5 µm) and a GSD of 20 m. The identified science case requires a good correlation of the instrument orbit with Sentinel-2 (maximum delay of 1-3 days) to combine data from the visible and near infrared (VNIR), the shortwave infrared (SWIR) and TIR spectral regions and to refine parameter retrieval.

4.
Evol Comput ; 19(2): 325-44, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21073298

RESUMO

Evolutionary algorithms (EAs) are randomized search heuristics that solve problems successfully in many cases. Their behavior is often described in terms of strategies to find a high location on Earth's surface. Unfortunately, many digital elevation models describing it contain void elements. These are elements not assigned an elevation. Therefore, we design and analyze simple EAs with different strategies to handle such partially defined functions. They are experimentally investigated on a dataset describing the elevation of Earth's surface. The largest value found by an EA within a certain runtime is measured, and the median over a few runs is computed and compared for the different EAs. For the dataset, the distribution of void elements seems to be neither random nor adversarial. They are so-called semirandomly distributed. To deepen our understanding of the behavior of the different EAs, they are theoretically considered on well-known pseudo-Boolean functions transferred to partially defined ones. These modifications are also performed in a semirandom way. The typical runtime until an optimum is found by an EA is analyzed, namely bounded from above and below, and compared for the different EAs. We figure out that for the random model it is a good strategy to assume that a void element has a worse function value than all previous elements. Whereas for the adversary model it is a good strategy to assume that a void element has the best function value of all previous elements.


Assuntos
Algoritmos , Modelos Teóricos , Planeta Terra , Ferramenta de Busca
5.
Evol Comput ; 16(4): 557-78, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19053499

RESUMO

Evolutionary algorithms (EAs) are population-based randomized search heuristics that often solve problems successfully. Here the focus is on the possible effects of changing the parent population size in a simple, but still realistic, mutation-based EA. It preserves diversity by avoiding duplicates in its population. On the one hand its behavior on well-known pseudo-Boolean example functions is investigated by means of a rigorous runtime analysis. A comparison with the expected runtime of the algorithm's variant that does not avoid duplicates demonstrates the strengths and weaknesses of maintaining diversity. On the other hand, newly developed functions are presented for which the optimizer considered that even a decrease of the population size by a single increment leads from efficient optimization to enormous runtime and overwhelming probability. This is proven for all feasible population sizes and thereby this result forms a hierarchy theorem. In order to obtain all these results new methods for the analysis of the EA are developed.


Assuntos
Densidade Demográfica , Algoritmos , Animais , Inteligência Artificial , Evolução Biológica , Evolução Molecular , Variação Genética , Humanos , Armazenamento e Recuperação da Informação , Modelos Genéticos , Modelos Estatísticos , Mutação , Reconhecimento Automatizado de Padrão , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA