Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rheumatology (Oxford) ; 63(3): 817-825, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37314987

RESUMO

OBJECTIVES: Our previous studies have demonstrated that the Damage Associated Molecular Pattern (DAMP) protein, S100A4, is overexpressed in the involved skin and peripheral blood of patients with SSc. It is associated with skin and lung involvement, and disease activity. By contrast, lack of S100A4 prevented the development of experimental dermal fibrosis. Herein we aimed to evaluate the effect of murine anti-S100A4 mAb 6B12 in the treatment of preestablished experimental dermal fibrosis. METHODS: The effects of 6B12 were assessed at therapeutic dosages in a modified bleomycin-induced dermal fibrosis mouse model by evaluating fibrotic (dermal thickness, proliferation of myofibroblasts, hydroxyproline content, phosphorylated Smad3-positive cell count) and inflammatory (leukocytes infiltrating the lesional skin, systemic levels of selected cytokines and chemokines) outcomes, and transcriptional profiling (RNA sequencing). RESULTS: Treatment with 7.5 mg/kg 6B12 attenuated and might even reduce pre-existing dermal fibrosis induced by bleomycin as evidenced by reduction in dermal thickness, myofibroblast count and collagen content. These antifibrotic effects were mediated by the downregulation of TGF-ß/Smad signalling and partially by reducing the number of leukocytes infiltrating the lesional skin and decrease in the systemic levels of IL-1α, eotaxin, CCL2 and CCL5. Moreover, transcriptional profiling demonstrated that 7.5 mg/kg 6B12 also modulated several profibrotic and proinflammatory processes relevant to the pathogenesis of SSc. CONCLUSION: Targeting S100A4 by the 6B12 mAb demonstrated potent antifibrotic and anti-inflammatory effects on bleomycin-induced dermal fibrosis and provided further evidence for the vital role of S100A4 in the pathophysiology of SSc.


Assuntos
Alarminas , Pele , Animais , Humanos , Camundongos , Anticorpos Monoclonais/farmacologia , Bleomicina/toxicidade , Modelos Animais de Doenças , Proteína A4 de Ligação a Cálcio da Família S100/genética , Pele/patologia , Fibrose
3.
Biomedicines ; 9(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200311

RESUMO

Our previous study demonstrated that heat shock protein 90 (Hsp90) is overexpressed in the involved skin of patients with systemic sclerosis (SSc) and in experimental dermal fibrosis. Pharmacological inhibition of Hsp90 prevented the stimulatory effects of transforming growth factor-beta on collagen synthesis and the development of dermal fibrosis in three preclinical models of SSc. In the next step of the preclinical analysis, herein, we aimed to evaluate the efficacy of an Hsp90 inhibitor, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), in the treatment of established experimental dermal fibrosis induced by bleomycin. Treatment with 17-DMAG demonstrated potent antifibrotic and anti-inflammatory properties: it decreased dermal thickening, collagen content, myofibroblast count, expression of transforming growth factor beta receptors, and pSmad3-positive cell counts, as well as leukocyte infiltration and systemic levels of crucial cytokines/chemokines involved in the pathogenesis of SSc, compared to vehicle-treated mice. 17-DMAG effectively prevented further progression and may induce regression of established bleomycin-induced dermal fibrosis to an extent comparable to nintedanib. These findings provide further evidence of the vital role of Hsp90 in the pathophysiology of SSc and characterize it as a potential target for the treatment of fibrosis with translational implications due to the availability of several Hsp90 inhibitors in clinical trials for other indications.

4.
J Pharm Pharmacol ; 56(2): 205-12, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15005879

RESUMO

The promising new drug quinlukast, 4-(4-(quinoline-2'-yl-methoxy)phenylsulphanyl)benzoic acid (VUFB 19363), is under investigation for its anti-inflammatory and anti-asthmatic effects. The main metabolite of quinlukast identified in incubations of rat microsomal fraction, and in primary culture of rat hepatocytes, is quinlukast sulfoxide (M2). Also, several other metabolites of quinlukast were found: two dihydrodiol derivatives (M3, M5) and quinlukast sulfone (M4). This study was conducted to characterize the enzymes involved in quinlukast biotransformation in rat in-vitro. Primary cultures of rat hepatocytes were treated with inducers of different cytochrome P450s (CYPs) for 48 h. Quinlukast (100 microM) was incubated for 24 h in a primary culture of induced or control hepatocytes. The effects of CYP inhibitors, ketoconazole, methylpyrazole, metyrapone and alpha-naphthoflavone (2, 10, 50 microM), on quinlukast metabolism were tested in induced and control hepatocytes. Significant induction of M2 (6 times), M5 (twice) and M3 (by 50%) formation by dexamethasone and strong concentration-dependent inhibition by ketoconazole indicated that CYP3A participates in formation of these metabolites. CYP1A catalyses formation of metabolite M3 mainly, as beta-naphthoflavone induced (10 times) production of M3 and a strong inhibitory effect of alpha-naphthoflavone on its formation was observed. A significant inhibitory effect of quinlukast (2, 10, 50 microM) on ethoxyresorufin, methoxyresorufin and benzyloxyresorufin O-dealkylase activity was observed as well.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/enzimologia , Antagonistas de Leucotrienos/farmacocinética , Microssomos Hepáticos/enzimologia , Quinolinas/farmacocinética , Animais , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Hidrocarboneto de Aril Hidroxilases/metabolismo , Hidrocarboneto de Aril Hidroxilases/farmacocinética , Biotransformação/efeitos dos fármacos , Biotransformação/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Remoção de Radical Alquila/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/fisiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Isoenzimas/metabolismo , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Oxigenases/antagonistas & inibidores , Oxigenases/metabolismo , Oxigenases/farmacocinética , Ratos , Ratos Wistar , Sulfóxidos/química , Sulfóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA