Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 13(11): 3043-3048, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30350943

RESUMO

Polyketide C-methylation occurs during a programmed sequence of dozens of reactions carried out by multidomain polyketide synthases (PKSs). Fungal PKSs perform these reactions iteratively, where a domain may be exposed to and act upon multiple enzyme-tethered intermediates during biosynthesis. We surveyed a collection of C-methyltransferase (CMeT) domains from nonreducing fungal PKSs to gain insight into how different methylation patterns are installed. Our in vitro results show that control of methylation resides primarily with the CMeT, and CMeTs can intercept and methylate intermediates from noncognate nonreducing PKS domains. Furthermore, the methylation pattern is likely imposed by a competition between methylation or ketosynthase-catalyzed extension for each intermediate. Understanding site-specific polyketide C-methylation may facilitate targeted C-C bond formation in engineered biosynthetic pathways.


Assuntos
Proteínas Fúngicas/química , Policetídeo Sintases/química , Policetídeos/síntese química , Proteínas Recombinantes de Fusão/química , Proteína de Transporte de Acila/genética , Aspergillus niger/enzimologia , Sequência de Bases , Proteínas Fúngicas/genética , Metilação , Monascus/enzimologia , Penicillium/enzimologia , Policetídeo Sintases/genética , Policetídeos/química , Domínios Proteicos/genética , Engenharia de Proteínas/métodos , Pironas/síntese química , Pironas/química , Proteínas Recombinantes de Fusão/genética
2.
Nat Chem Biol ; 14(5): 474-479, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29610486

RESUMO

Polyketide synthases (PKSs) are microbial multienzymes for the biosynthesis of biologically potent secondary metabolites. Polyketide production is initiated by the loading of a starter unit onto an integral acyl carrier protein (ACP) and its subsequent transfer to the ketosynthase (KS). Initial substrate loading is achieved either by multidomain loading modules or by the integration of designated loading domains, such as starter unit acyltransferases (SAT), whose structural integration into PKS remains unresolved. A crystal structure of the loading/condensing region of the nonreducing PKS CTB1 demonstrates the ordered insertion of a pseudodimeric SAT into the condensing region, which is aided by the SAT-KS linker. Cryo-electron microscopy of the post-loading state trapped by mechanism-based crosslinking of ACP to KS reveals asymmetry across the CTB1 loading/-condensing region, in accord with preferential 1:2 binding stoichiometry. These results are critical for re-engineering the loading step in polyketide biosynthesis and support functional relevance of asymmetric conformations of PKSs.


Assuntos
Proteína de Transporte de Acila/química , Policetídeo Sintases/química , Ascomicetos/metabolismo , Domínio Catalítico , Reagentes de Ligações Cruzadas/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Escherichia coli/metabolismo , Panteteína/química , Fosforilação , Propionatos/química , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Especificidade por Substrato
3.
Chem Commun (Camb) ; 54(1): 50-53, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29189834

RESUMO

Polyketide synthases (PKSs) have several known editing mechanisms to ensure that non-productive intermediates are removed from the acyl carrier protein (ACP). We demonstrate that CitA, a putative hydrolase in the citrinin biosynthetic gene cluster, removes ACP-bound acyl intermediates. We propose that it serves an editing role in trans.


Assuntos
Citrinina/biossíntese , Proteínas Fúngicas/metabolismo , Hidrolases/metabolismo , Proteína de Transporte de Acila/metabolismo , Citrinina/química , Proteínas Fúngicas/genética , Hidrolases/genética , Hidrólise , Isomerismo , Monascus/enzimologia , Mutagênese Sítio-Dirigida , Policetídeo Sintases/metabolismo
4.
Cell Chem Biol ; 24(3): 316-325, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28238725

RESUMO

Fungal polyketide synthases (PKSs) are large, multidomain enzymes that biosynthesize a wide range of natural products. A hallmark of these megasynthases is the iterative use of catalytic domains to extend and modify a series of enzyme-bound intermediates. A subset of these iterative PKSs (iPKSs) contains a C-methyltransferase (CMeT) domain that adds one or more S-adenosylmethionine (SAM)-derived methyl groups to the carbon framework. Neither the basis by which only specific positions on the growing intermediate are methylated ("programming") nor the mechanism of methylation are well understood. Domain dissection and reconstitution of PksCT, the fungal non-reducing PKS (NR-PKS) responsible for the first isolable intermediate in citrinin biosynthesis, demonstrates the role of CMeT-catalyzed methylation in precursor elongation and pentaketide formation. The crystal structure of the S-adenosyl-homocysteine (SAH) coproduct-bound PksCT CMeT domain reveals a two-subdomain organization with a novel N-terminal subdomain characteristic of PKS CMeT domains and provides insights into co-factor and ligand recognition.


Assuntos
Citrinina/biossíntese , Fungos/enzimologia , Policetídeo Sintases/metabolismo , Sítios de Ligação , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Citrinina/análise , Citrinina/química , Clonagem Molecular , Cristalografia por Raios X , Metilação , Simulação de Acoplamento Molecular , Monascus/enzimologia , Filogenia , Policetídeo Sintases/classificação , Policetídeo Sintases/genética , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato
5.
J Am Chem Soc ; 136(20): 7348-62, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24815013

RESUMO

Iterative, nonreducing polyketide synthases (NR-PKSs) are multidomain enzymes responsible for the construction of the core architecture of aromatic polyketide natural products in fungi. Engineering these enzymes for the production of non-native metabolites has been a long-standing goal. We conducted a systematic survey of in vitro "domain swapped" NR-PKSs using an enzyme deconstruction approach. The NR-PKSs were dissected into mono- to multidomain fragments and recombined as noncognate pairs in vitro, reconstituting enzymatic activity. The enzymes used in this study produce aromatic polyketides that are representative of the four main chemical features set by the individual NR-PKS: starter unit selection, chain-length control, cyclization register control, and product release mechanism. We found that boundary conditions limit successful chemistry, which are dependent on a set of underlying enzymatic mechanisms. Crucial for successful redirection of catalysis, the rate of productive chemistry must outpace the rate of spontaneous derailment and thioesterase-mediated editing. Additionally, all of the domains in a noncognate system must interact efficiently if chemical redirection is to proceed. These observations refine and further substantiate current understanding of the mechanisms governing NR-PKS catalysis.


Assuntos
Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Biocatálise , Estrutura Molecular , Policetídeo Sintases/química , Policetídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA