Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 929: 172239, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583620

RESUMO

There are substantial concerns about impaired honey bee health and colony losses due to several poorly understood factors. We used MALDI profiling (MALDI BeeTyping®) analysis to investigate how some environmental and management factors under field conditions across Europe affected the honey bee haemolymph peptidome (all peptides in the circulatory fluid), as a profile of molecular markers representing the immune status of Apis mellifera. Honey bees were exposed to a range of environmental stressors in 128 agricultural sites across eight European countries in four biogeographic zones, with each country contributing eight sites each for two different cropping systems: oilseed rape (OSR) and apple (APP). The full haemolymph peptide profiles, including the presence and levels of three key immunity markers, namely the antimicrobial peptides (AMPs) Apidaecin, Abaecin and Defensin-1, allowed the honey bee responses to environmental variables to be discriminated by country, crop type and site. When considering just the AMPs, it was not possible to distinguish between countries by the prevalence of each AMP in the samples. However, it was possible to discriminate between countries on the amounts of the AMPs, with the Swedish samples in particular expressing high amounts of all AMPs. A machine learning model was developed to discriminate the haemolymphs of bees from APP and OSR sites. The model was 90.6 % accurate in identifying the crop type from the samples used to build the model. Overall, MALDI BeeTyping® of bee haemolymph represents a promising and cost-effective "blood test" for simultaneously monitoring dozens of peptide markers affected by environmental stressors at the landscape scale, thus providing policymakers with new diagnostic and regulatory tools for monitoring bee health.


Assuntos
Agricultura , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Animais , Abelhas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Europa (Continente) , Testes Hematológicos , Hemolinfa , Monitoramento Ambiental/métodos
2.
Sci Total Environ ; 927: 172118, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569959

RESUMO

Declines in insect pollinators have been linked to a range of causative factors such as disease, loss of habitats, the quality and availability of food, and exposure to pesticides. Here, we analysed an extensive dataset generated from pesticide screening of foraging insects, pollen-nectar stores/beebread, pollen and ingested nectar across three species of bees collected at 128 European sites set in two types of crop. In this paper, we aimed to (i) derive a new index to summarise key aspects of complex pesticide exposure data and (ii) understand the links between pesticide exposures depicted by the different matrices, bee species and apple orchards versus oilseed rape crops. We found that summary indices were highly correlated with the number of pesticides detected in the related matrix but not with which pesticides were present. Matrices collected from apple orchards generally contained a higher number of pesticides (7.6 pesticides per site) than matrices from sites collected from oilseed rape crops (3.5 pesticides), with fungicides being highly represented in apple crops. A greater number of pesticides were found in pollen-nectar stores/beebread and pollen matrices compared with nectar and bee body matrices. Our results show that for a complete assessment of pollinator pesticide exposure, it is necessary to consider several different exposure routes and multiple species of bees across different agricultural systems.


Assuntos
Produtos Agrícolas , Monitoramento Ambiental , Praguicidas , Polinização , Animais , Abelhas/fisiologia , Praguicidas/análise , Pólen , Malus , Exposição Ambiental/estatística & dados numéricos
3.
Sci Rep ; 14(1): 3524, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347035

RESUMO

Infectious and parasitic agents (IPAs) and their associated diseases are major environmental stressors that jeopardize bee health, both alone and in interaction with other stressors. Their impact on pollinator communities can be assessed by studying multiple sentinel bee species. Here, we analysed the field exposure of three sentinel managed bee species (Apis mellifera, Bombus terrestris and Osmia bicornis) to 11 IPAs (six RNA viruses, two bacteria, three microsporidia). The sentinel bees were deployed at 128 sites in eight European countries adjacent to either oilseed rape fields or apple orchards during crop bloom. Adult bees of each species were sampled before their placement and after crop bloom. The IPAs were detected and quantified using a harmonised, high-throughput and semi-automatized qPCR workflow. We describe differences among bee species in IPA profiles (richness, diversity, detection frequencies, loads and their change upon field exposure, and exposure risk), with no clear patterns related to the country or focal crop. Our results suggest that the most frequent IPAs in adult bees are more appropriate for assessing the bees' IPA exposure risk. We also report positive correlations of IPA loads supporting the potential IPA transmission among sentinels, suggesting careful consideration should be taken when introducing managed pollinators in ecologically sensitive environments.


Assuntos
Bactérias , Polinização , Abelhas , Animais , Europa (Continente)
4.
Nature ; 628(8007): 355-358, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38030722

RESUMO

Sustainable agriculture requires balancing crop yields with the effects of pesticides on non-target organisms, such as bees and other crop pollinators. Field studies demonstrated that agricultural use of neonicotinoid insecticides can negatively affect wild bee species1,2, leading to restrictions on these compounds3. However, besides neonicotinoids, field-based evidence of the effects of landscape pesticide exposure on wild bees is lacking. Bees encounter many pesticides in agricultural landscapes4-9 and the effects of this landscape exposure on colony growth and development of any bee species remains unknown. Here we show that the many pesticides found in bumble bee-collected pollen are associated with reduced colony performance during crop bloom, especially in simplified landscapes with intensive agricultural practices. Our results from 316 Bombus terrestris colonies at 106 agricultural sites across eight European countries confirm that the regulatory system fails to sufficiently prevent pesticide-related impacts on non-target organisms, even for a eusocial pollinator species in which colony size may buffer against such impacts10,11. These findings support the need for postapproval monitoring of both pesticide exposure and effects to confirm that the regulatory process is sufficiently protective in limiting the collateral environmental damage of agricultural pesticide use.


Assuntos
Inseticidas , Praguicidas , Abelhas , Animais , Praguicidas/toxicidade , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Agricultura , Pólen
5.
PeerJ ; 11: e16319, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025756

RESUMO

Background: Mutualistic interactions between plants and their pollinating insects are critical to the maintenance of biodiversity. However, we have yet to demonstrate that we are able to manage the structural properties of these networks for the purposes of pollinator conservation and preserving functional outcomes, such as pollination services. Our objective was to explore the extent of our ability to experimentally increase, decrease, and maintain connectance, a structural attribute that reflects patterns of insect visitation and foraging preferences. Patterns of connectance relate to the stability and function of ecological networks. Methods: We implemented a 2-year field experiment across eight sites in urban Dublin, Ireland, applying four agrochemical treatments to fixed communities of seven flowering plant species in a randomized block design. We spent ~117 h collecting 1,908 flower-visiting insects of 92 species or morphospecies with standardized sampling methods across the 2 years. We hypothesized that the fertilizer treatment would increase, herbicide decrease, and a combination of both maintain the connectance of the network, relative to a control treatment of just water. Results: Our results showed that we were able to successfully increase network connectance with a fertilizer treatment, and maintain network connectance with a combination of fertilizer and herbicide. However, we were not successful in decreasing network connectance with the herbicide treatment. The increase in connectance in the fertilized treatment was due to an increased species richness of visiting insects, rather than changes to their abundance. We also demonstrated that this change was due to an increase in the realized proportion of insect visitor species rather than increased visitation by common, generalist species of floral visitors. Overall, this work suggests that connectance is an attribute of network structure that can be manipulated, with implications for management goals or conservation efforts in these mutualistic communities.


Assuntos
Fertilizantes , Herbicidas , Animais , Insetos , Polinização , Plantas
6.
Sci Total Environ ; 896: 166214, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37567302

RESUMO

In an agricultural environment, where crops are treated with pesticides, bees are likely to be exposed to a range of chemical compounds in a variety of ways. The extent to which different bee species are affected by these chemicals, largely depends on the concentrations and type of exposure. We quantified the presence of selected pesticide compounds in the pollen of two different entomophilous crops; oilseed rape (Brassica napus) and broad bean (Vicia faba). Sampling was performed in 12 sites in Ireland and our results were compared with the pollen loads of honey bees and bumble bees actively foraging on those crops in those same sites. Detections were compound specific, and the timing of pesticide application in relation to sampling likely influenced the final residue contamination levels. Most detections originated from compounds that were not recently applied on the fields, and samples from B. napus fields were more contaminated compared to those from V. faba fields. Crop pollen was contaminated only with fungicides, honey bee pollen loads contained mainly fungicides, while more insecticides were detected in bumble bee pollen loads. The highest number of compounds and most detections were observed in bumble bee pollen loads, where notably, all five neonicotinoids assessed (acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam) were detected despite the no recent application of these compounds on the fields where samples were collected. The concentrations of neonicotinoid insecticides were positively correlated with the number of wild plant species present in the bumble bee-collected pollen samples, but this relationship could not be verified for honey bees. The compounds azoxystrobin, boscalid and thiamethoxam formed the most common pesticide combination in pollen. Our results raise concerns about potential long-term bee exposure to multiple residues and question whether honey bees are suitable surrogates for pesticide risk assessments for all bee species.


Assuntos
Brassica napus , Fungicidas Industriais , Mel , Inseticidas , Praguicidas , Abelhas , Animais , Praguicidas/toxicidade , Tiametoxam , Inseticidas/toxicidade , Inseticidas/análise , Neonicotinoides/toxicidade , Mel/análise , Brassica napus/química
7.
PeerJ ; 11: e15452, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37334137

RESUMO

Background: Pollinating insects provide economically and ecologically valuable services, but are threatened by a variety of anthropogenic changes. The availability and quality of floral resources may be affected by anthropogenic land use. For example, flower-visiting insects in agroecosystems rely on weeds on field edges for foraging resources, but these weeds are often exposed to agrochemicals that may compromise the quality of their floral resources. Methods: We conducted complementary field and greenhouse experiments to evaluate the: (1) effect of low concentrations of agrochemical exposure on nectar and pollen quality and (2) relationship between floral resource quality and insect visitation. We applied the same agrochemcial treatments (low concentrations of fertilizer, low concentrations of herbicide, a combination of both, and a control of just water) to seven plant species in the field and greenhouse. We collected data on floral visitation by insects in the field experiment for two field seasons and collected pollen and nectar from focal plants in the greenhouse to avoid interfering with insect visitation in the field. Results: We found pollen amino acid concentrations were lower in plants exposed to low concentrations of herbicide, and pollen fatty acid concentrations were lower in plants exposed to low concentrations of fertilizer, while nectar amino acids were higher in plants exposed to low concentrations of either fertilizer or herbicide. Exposure to low fertilizer concentrations also increased the quantity of pollen and nectar produced per flower. The responses of plants exposed to the experimental treatments in the greenhouse helped explain insect visitation in the field study. The insect visitation rate correlated with nectar amino acids, pollen amino acids, and pollen fatty acids. An interaction between pollen protein and floral display suggested pollen amino acid concentrations drove insect preference among plant species when floral display sizes were large. We show that floral resource quality is sensitive to agrochemical exposure and that flower-visiting insects are sensitive to variation in floral resource quality.


Assuntos
Herbicidas , Néctar de Plantas , Animais , Fertilizantes , Polinização/fisiologia , Pólen , Insetos/fisiologia , Plantas Daninhas , Agroquímicos , Aminoácidos
8.
Genome Biol Evol ; 15(4)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37042738

RESUMO

All organisms require an immune system to recognize, differentiate, and defend against pathogens. From an evolutionary perspective, immune systems evolve under strong selective pressures exerted by fast-evolving pathogens. However, the functional diversity of the immune system means that different immune components and their associated genes may evolve under varying forms of selection. Insect pollinators, which provide essential ecosystem services, are an important system in which to understand how selection has shaped immune gene evolution as their populations are experiencing declines with pathogens highlighted as a potential contributing factor. To improve our understanding of the genetic variation found in the immune genes of an essential pollinator, we performed whole-genome resequencing of wild-caught Bombus terrestris males. We first assessed nucleotide diversity and extended haplotype homozygosity for canonical immune genes finding the strongest signatures of positive selection acting on genes involved in pathogen recognition and antiviral defense, possibly driven by growing pathogen spread in wild populations. We also identified immune genes evolving under strong purifying selection, highlighting potential constraints on the bumblebee immune system. Lastly, we highlight the potential loss of function alleles present in the immune genes of wild-caught haploid males, suggesting that such genes are potentially less essential for development and survival and represent redundancy in the gene repertoire of the bumblebee immune system. Collectively, our analysis provides novel insights into the recent evolutionary history of the immune system of a key pollinator, highlighting targets of selection, constraints to adaptation, and potential redundancy.


Assuntos
Adaptação Fisiológica , Ecossistema , Masculino , Abelhas/genética , Animais , Aclimatação , Análise de Sequência de DNA , Seleção Genética
9.
J Exp Biol ; 226(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36861783

RESUMO

Fungicides and herbicides are two of the most heavily applied pesticide classes in the world, but receive little research attention with regards to their potential impacts on bees. As they are not designed to target insects, the mechanisms behind potential impacts of these pesticides are unclear. It is therefore important to understand their influence at a range of levels, including sublethal impacts on behaviours such as learning. We used the proboscis extension reflex (PER) paradigm to assess how the herbicide glyphosate and the fungicide prothioconazole affect bumblebee olfactory learning. We also assessed responsiveness, and compared the impacts of these active ingredients and their respective commercial formulations (Roundup Biactive and Proline). We found that learning was not impaired by either formulation but, of the bees that displayed evidence of learning, exposure to prothioconazole active ingredient increased learning level in some situations, while exposure to glyphosate active ingredient resulted in bumblebees being less likely to respond to antennal stimulation with sucrose. Our data suggest that fungicides and herbicides may not negatively impact olfactory learning ability when bumblebees are exposed orally to field-realistic doses in a lab setting, but that glyphosate has the potential to cause changes in responsiveness in bees. As we found impacts of active ingredients and not commercial formulations, this suggests that co-formulants may modify impacts of active ingredients in the products tested on olfactory learning without being toxic themselves. More research is needed to understand the mechanisms behind potential impacts of fungicides and herbicides on bees, and to evaluate the implications of behavioural changes caused by glyphosate and prothioconazole for bumblebee fitness.


Assuntos
Fungicidas Industriais , Herbicidas , Abelhas , Animais , Herbicidas/toxicidade , Fungicidas Industriais/toxicidade , Aprendizagem , Condicionamento Clássico , Olfato
10.
Circ Econ Sustain ; 3(1): 77-91, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970551

RESUMO

Bioeconomy is proposed as a solution to reduce reliance on fossil resources. However, bioeconomy is not always inherently circular and can mimic the conventional take, make, consume, dispose linear economic model. Agricultural systems will be relied on to provide food, materials, and energy, so unless action is taken, demand for land will inevitably exceed supply. Bioeconomy will have to embrace circularity to enable production of renewable feedstocks in terms of both biomass yield and maintaining essential natural capital. The concept of biocircularity is proposed as an integrated systems approach to the sustainable production of renewable biological materials focusing on extended use, maximum reuse, recycling, and design for degradation from polymers to monomers, while avoiding the "failure" of end of life and minimizing energy demand and waste. Challenges are discussed including sustainable production and consumption; quantifying externalities; decoupling economic growth from depletion; valuing natural ecosystems; design across scales; renewable energy provision; barriers to adoption; and integration with food systems. Biocircularity offers a theoretical basis and measures of success, for implementing sustainable circular bioeconomy.

11.
Sci Total Environ ; 879: 162971, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36958551

RESUMO

Cultivation of mass flowering entomophilous crops benefits from the presence of managed and wild pollinators, who visit flowers to forage on pollen and nectar. However, management of these crops typically includes application of pesticides, the presence of which may pose a hazard for pollinators foraging in an agricultural environment. To determine the levels of potential exposure to pesticides, their presence and concentration in pollen and nectar need assessing, both within and beyond the target crop plants. We selected ten pesticide compounds and one metabolite and analysed their occurrence in a crop (Brassica napus) and a wild plant (Rubus fruticosus agg.), which was flowering in field edges. Nectar and pollen from both plants were collected from five spring and five winter sown B. napus fields in Ireland, and were tested for pesticide residues, using QuEChERS and Liquid Chromatography tandem mass spectrometry (LC-MS/MS). Pesticide residues were detected in plant pollen and nectar of both plants. Most detections were from fields with no recorded application of the respective compounds in that year, but higher concentrations were observed in recently treated fields. Overall, more residues were detected in B. napus pollen and nectar than in the wild plant, and B. napus pollen had the highest mean concentration of residues. All matrices were contaminated with at least three compounds, and the most frequently detected compounds were fungicides. The most common compound mixture was comprised of the fungicides azoxystrobin, boscalid, and the neonicotinoid insecticide clothianidin, which was not recently applied on the fields. Our results indicate that persistent compounds like the neonicotinoids, should be continuously monitored for their presence and fate in the field environment. The toxicological evaluation of the compound mixtures identified in the present study should be performed, to determine their impacts on foraging insects that may be exposed to them.


Assuntos
Fungicidas Industriais , Inseticidas , Resíduos de Praguicidas , Praguicidas , Abelhas , Néctar de Plantas/química , Praguicidas/análise , Resíduos de Praguicidas/análise , Fungicidas Industriais/análise , Cromatografia Líquida , Espectrometria de Massas em Tandem , Neonicotinoides/análise , Inseticidas/análise , Pólen/química , Produtos Agrícolas/química
12.
Environ Sci Technol ; 57(8): 3445-3454, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36780611

RESUMO

While wild pollinators play a key role in global food production, their assessment is currently missing from the most commonly used environmental impact assessment method, Life Cycle Assessment (LCA). This is mainly due to constraints in data availability and compatibility with LCA inventories. To target this gap, relative pollinator abundance estimates were obtained with the use of a Delphi assessment, during which 25 experts, covering 16 nationalities and 45 countries of expertise, provided scores for low, typical, and high expected abundance associated with 24 land use categories. Based on these estimates, this study presents a set of globally generic characterization factors (CFs) that allows translating land use into relative impacts to wild pollinator abundance. The associated uncertainty of the CFs is presented along with an illustrative case to demonstrate the applicability in LCA studies. The CFs based on estimates that reached consensus during the Delphi assessment are recommended as readily applicable and allow key differences among land use types to be distinguished. The resulting CFs are proposed as the first step for incorporating pollinator impacts in LCA studies, exemplifying the use of expert elicitation methods as a useful tool to fill data gaps that constrain the characterization of key environmental impacts.


Assuntos
Conservação dos Recursos Naturais , Animais , Conservação dos Recursos Naturais/métodos , Alimentos , Estágios do Ciclo de Vida
13.
Oecologia ; 201(3): 689-701, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36790571

RESUMO

Insect pollination, and in particular pollination by bees, is a highly valued ecosystem service that ensures plant reproduction and the production of high-quality crops. Bee activity is known to be influenced by the weather, and as the global climate continues to change, the flying frequency and foraging behaviour of bees may also change. To maximise the benefits of pollination in a changing world, we must first understand how current weather conditions influence the activity of different bee species. This is of particular interest in a country such as Ireland where inclement weather conditions are nominally sub-optimal for foraging. We observed honeybee (Apis mellifera) and buff-tailed bumblebee (Bombus terrestris) activity across a variety of weather conditions at seven apple orchards to determine how four weather variables (temperature, relative humidity, solar radiation, wind) influenced the flight activity of each species. Each orchard contained three honeybee and three bumblebee colonies, and so we were able to observe a colony of each species concurrently in the same weather conditions. Overall, honeybees were more sensitive to changes in weather than bumblebees and could be more predisposed to future changes in within-day weather conditions. Our results indicate bumblebees could compensate for low honeybee activity in inclement conditions, which supports the theory that pollinator diversity provides resilience. This may be particularly important in management of pollinators in crops that flower in the spring when weather is more variable, and to allow varied responses to global climate change.


Assuntos
Ecossistema , Tempo (Meteorologia) , Abelhas , Animais , Polinização/fisiologia , Insetos , Estações do Ano
14.
Sci Total Environ ; 857(Pt 1): 159316, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36228799

RESUMO

Globally, we are faced with a climate crisis that requires urgent transition to a low-carbon economy. Simultaneously, the biodiversity crisis demands equally urgent action to prevent further species loss and promote restoration and rehabilitation of ecosystems. Climate action itself must prevent further pressures on biodiversity and options for synergistic gains for both climate and biodiversity change mitigation and adaptation need to be explored and implemented. Here, we review the key potential impacts of climate mitigation measures in energy and land-use on biodiversity, including the development of renewable energy such as offshore and onshore wind, solar, and bioenergy. We also assess the potential impacts of climate action driven afforestation and native habitat rehabilitation and restoration. We apply our findings to Ireland as a unique case-study as the government develops a coordinated response to climate and biodiversity change through declaration of a joint climate and biodiversity emergency and inclusion of biodiversity in key climate change legislation and the national Climate Action Plan. However, acknowledgement of these intertwined crises is only a first step; implementation of synergistic solutions requires careful planning. We demonstrate how synergy between climate and biodiversity action can be gained through explicit consideration of the effects of climate change mitigation strategies, such as energy infrastructure development and land-use change, on biodiversity. We identify several potential "win-win" strategies for both climate mitigation and biodiversity conservation. For Ireland, these include increasing offshore wind capacity, rehabilitating natural areas surrounding onshore wind turbines, and limiting the development of solar photovoltaics to the built environment. Ultimately, climate mitigation should be implemented in a "Right Action, Right Place" framework to maximise positive biodiversity benefits. This review provides one of the first examples of how national climate actions can be implemented in a biodiversity-conscious way to initiate discussion about synergistic solutions for both climate and biodiversity.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Biodiversidade , Mudança Climática , Energia Renovável
15.
Heliyon ; 8(12): e12179, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36531643

RESUMO

Pesticide products containing glyphosate as a systemic active ingredient are some of the most extensively used herbicides worldwide. After spraying, residues have been found in nectar and pollen collected by bees foraging on treated plants. This dietary exposure to glyphosate could pose a hazard for flower-visiting animals including bees, and for the delivery of pollination services. Here, we evaluated whether glyphosate contaminates nectar and pollen of targeted crops and non-target wild plants. Oilseed rape was selected as focal crop species, and Rubus fruticosus growing in the hedgerows surrounding the crop was chosen as non-target plant species. Seven fields of oilseed rape, where a glyphosate-based product was applied, were chosen in east and southeast Ireland, and pollen and nectar were extracted from flowers sampled from the field at various intervals following glyphosate application. Pollen loads were taken from honeybees and bumblebees foraging on the crop at the same time. Glyphosate and aminomethylphosphonic acid (AMPA) residues were extracted using acidified methanol and their concentrations in the samples were determined by a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) method. Glyphosate was detected in R. fruticosus nectar and pollen samples that were taken within a timeframe of two to seven days after the application on the crop as a desiccant. No glyphosate was detected when the application took place before or more than two months prior to our sampling in any of the evaluated matrices. The metabolite AMPA was not detected in any samples. To gain further insight into the potential extent of translocation within both plants and soil when a crop is desiccated using glyphosate before harvesting, and the potential impacts on bees, we recommend a longitudinal study of the presence and fate of glyphosate in non-target flowering plants growing nearby crop fields, over a period of several days after glyphosate application.

16.
Ecol Evol ; 12(10): e9347, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36225829

RESUMO

Beneficial insects provide valuable services upon which we rely, including pollination. Pollinator conservation is a global priority, and a significant concern in Ireland, where over half of extant bee species have declined significantly in recent decades. As flower-visiting insects rely on flowering plants, one way to conserve and promote pollinator populations is to protect high-quality habitat. We analyzed the structure of insect-flower interactions from multiple habitat categories in a large database of interactions from Ireland. Our primary goals were to compare spatial and temporal variation in Irish network structures, compare Irish networks to published networks from other countries, and provide evidence-based recommendations for pollinator conservation in Ireland by identifying well-visited plant species that may promote high pollinator diversity, abundance, and functional complementarity. Habitat types within Ireland differed substantially: seminatural grasslands had the highest pollinator species richness and largest number of unique pollinator species, while intensively managed habitats exhibited negative asymmetry (more plant than pollinator species). This negative asymmetry is notable because most plant-pollinator networks exhibit a positive asymmetry. Within intensively managed habitats, agricultural and urban habitats differed. Urban habitats had the highest number of non-native plant species while agricultural habitats had the lowest pollinator species richness. We also found Irish networks varied across the growing season, where July had the highest plant and insect species richness. When comparing Irish networks to published networks from other countries, we found Irish networks had a higher ratio of plant species to pollinator species, and that this difference was most evident in agricultural habitats. This ratio means the typical network asymmetry (more pollinator than plant species) was flipped (more plant than pollinator species) in the Irish network. We conclude that conserving seminatural grasslands in Ireland will be an essential component of pollinator conservation and identify thirty-five plant species important for restoring seminatural habitats.

17.
PeerJ ; 10: e13586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35855900

RESUMO

Besides the benefits of plant protection products (PPPs) for agricultural production, there is an increasing acknowledgement of the associated potential environmental risks. Here, we examine the feasibility of summarizing the extent of PPP usage at the country level, using Ireland as a case study, as well as at the European level. We used the area over which PPPs are applied (basic area) as an example variable that is relevant to initially assess the geographic extent of environmental risk. In Irish agricultural systems, which are primarily grass-based, herbicides fluroxypyr and glyphosate are the most widely applied active substances (ASs) in terms of basic area, followed by the fungicides chlorothalonil and prothioconazole that are closely associated with arable crops. Although all EU countries are subject to Regulation (EC) No 1185/2009, which sets the obligation of PPP usage data reporting at the national level, we only found usable data that met our criteria for Estonia, Germany, Finland, and Spain (4 of 30 countries reviewed). Overall, the most widely applied fungicide and herbicide in terms of basic area were prothioconazole (20%, 7% and 5% of national cultivated areas of Germany, Estonia and Ireland) and glyphosate (11%, 8% and 5% of national cultivated areas of Spain, Estonia and Ireland) respectively, although evaluations using application frequency may result in the observation of different trends. Several recommendations are proposed to tackle current data gaps and deficiencies in accessibility and usability of pesticide usage data across the EU in order to better inform environmental risk assessment and promote evidence-based policymaking.


Assuntos
Fungicidas Industriais , Herbicidas , Magnoliopsida , Praguicidas , Agricultura , Irlanda
18.
Environ Toxicol Chem ; 41(10): 2603-2612, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35866464

RESUMO

Herbicides are the most widely used pesticides globally. Although used to control weeds, they may also pose a risk to bee health. A key knowledge gap is how bees could be exposed to herbicides in the environment, including whether they may forage on treated plants before they die. We used a choice test to determine if bumblebees would forage on plants treated with glyphosate at two time periods after treatment. We also determined whether glyphosate and its degradation product aminomethylphosphonic acid were present as residues in the pollen collected by the bees while foraging. Finally, we explored if floral resources (nectar and pollen) remained present in plants after herbicide treatment. In general bees indiscriminately foraged on both plants treated with glyphosate and controls, showing no avoidance of treated plants. Although the time spent on individual flowers was slightly lower on glyphosate treated plants, this did not affect the bees' choice overall. We found that floral resources remained present in plants for at least 5 days after lethal treatment with glyphosate and that glyphosate residues were present in pollen for at least 70 h posttreatment. Our results suggest that bees could be exposed to herbicide in the environment, both topically and orally, by foraging on plants in the period between herbicide treatment and death. Identifying this route of exposure is a first step in understanding the risks of herbicides to bees. The effects of herbicides on bees themselves are uncertain and warrant further investigation to allow full risk assessment of these compounds to pollinating insects. Environ Toxicol Chem 2022;41:2603-2612. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Herbicidas , Praguicidas , Animais , Abelhas , Glicina/análogos & derivados , Glicina/toxicidade , Herbicidas/toxicidade , Néctar de Plantas , Plantas , Glifosato
19.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210165, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35491595

RESUMO

Despite a substantial increase in scientific, public and political interest in pollinator health and many practical conservation efforts, incorporating initiatives across a range of scales and sectors, pollinator health continues to decline. We review existing pollinator conservation initiatives and define their common structural elements. We argue that implementing effective action for pollinators requires further scientific understanding in six key areas: (i) status and trends of pollinator populations; (ii) direct and indirect drivers of decline, including their interactions; (iii) risks and co-benefits of pollinator conservation actions for ecosystems; (iv) benefits of pollinator conservation for society; (v) the effectiveness of context-specific, tailored, actionable solutions; and (vi) integrated frameworks that explicitly link benefits and values with actions to reverse declines. We propose use of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) conceptual framework to link issues and identify critical gaps in both understanding and action for pollinators. This approach reveals the centrality of addressing the recognized indirect drivers of decline, such as patterns of global trade and demography, which are frequently overlooked in current pollinator conservation efforts. Finally, we discuss how existing and new approaches in research can support efforts to move beyond these shortcomings in pollinator conservation initiatives. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Assuntos
Ecossistema , Polinização , Biodiversidade
20.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210168, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35491597

RESUMO

Plant compounds associated with herbivore defence occur widely in floral nectar and can impact pollinator health. We showed previously that Rhododendron ponticum nectar contains grayanotoxin I (GTX I) at concentrations that are lethal or sublethal to honeybees and a solitary bee in the plant's non-native range in Ireland. Here we further examined this conflict and tested the hypotheses that nectar GTX I is subject to negative pollinator-mediated selection in the non-native range, but that phenotypic linkage between GTX I levels in nectar and leaves acts as a constraint on independent evolution. We found that nectar GTX I experienced negative directional selection in the non-native range, in contrast to the native Iberian range, and that the magnitude and frequency of pollinator limitation indicated that selection was pollinator-mediated. Surprisingly, nectar GTX I levels were decoupled from those of leaves in the non-native range, which may have assisted post-invasion evolution of nectar without compromising the anti-herbivore function of GTX I (here demonstrated in bioassays with an ecologically relevant herbivore). Our study emphasizes the centrality of pollinator health as a concept linked to the invasion process, and how post-invasion evolution can be targeted toward minimizing lethal or sub-lethal effects on pollinators. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Assuntos
Néctar de Plantas , Polinização , Animais , Abelhas , Flores , Herbivoria , Folhas de Planta , Néctar de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA