Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 224: 105842, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417531

RESUMO

Enteroviruses are a significant global health concern, causing a spectrum of diseases from the common cold to more severe conditions like hand-foot-and-mouth disease, meningitis, myocarditis, pancreatitis, and poliomyelitis. Current treatment options for these infections are limited, underscoring the urgent need for effective therapeutic strategies. To find better treatment option we analyzed toxicity and efficacy of 12 known broad-spectrum anti-enterovirals both individually and in combinations against different enteroviruses in vitro. We identified several novel, synergistic two-drug and three-drug combinations that demonstrated significant inhibition of enterovirus infections in vitro. Specifically, the triple-drug combination of pleconaril, rupintrivir, and remdesivir exhibited remarkable efficacy against echovirus (EV) 1, EV6, EV11, and coxsackievirus (CV) B5, in human lung epithelial A549 cells. This combination surpassed the effectiveness of single-agent or dual-drug treatments, as evidenced by its ability to protect A549 cells from EV1-induced cytotoxicity across seven passages. Additionally, this triple-drug cocktail showed potent antiviral activity against EV-A71 in human intestinal organoids. Thus, our findings highlight the therapeutic potential of the pleconaril-rupintrivir-remdesivir combination as a broad-spectrum treatment option against a range of enterovirus infections. The study also paves the way towards development of strategic antiviral drug combinations with virus family coverage and high-resistance barriers.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Isoxazóis , Oxidiazóis , Oxazóis , Fenilalanina/análogos & derivados , Pirrolidinonas , Valina/análogos & derivados , Animais , Humanos , Infecções por Enterovirus/tratamento farmacológico , Enterovirus Humano B , Antivirais/farmacologia , Antivirais/uso terapêutico , Combinação de Medicamentos
2.
Nat Prod Res ; 37(24): 4156-4161, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36714926

RESUMO

We tested in vivo anti-herpetic effect of castalagin, an ellagitannin compound, extracted from pedunculate oak (Quercus robur). Previous investigations found that castalagin possesses a strong inhibitory effect in vitro against HSV-1/2 equal to acyclovir (ACV). It is also effective against ACV-resistant mutants and shows a synergistic effect with ACV. We study castalagin's activity towards HSV-1 infection in newborn mice. Acute toxicity determination in mice showed LD50 value of 295 mg/kg. Prolonged toxicity was also constructed. Castalagin manifested a marked activity against HSV-1 (LD90/0.02 ml) administered in 7-day course at 0.02 ml s.c. doses of 7.5 or 10 mg/kg (PI 57-58%). ACV course demonstrated a marked activity at 20 mg/kg. The selectivity ratio LD50/ED50 (295/7.5) could be accepted as ≥ 33.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Camundongos , Animais , Taninos Hidrolisáveis/farmacologia , Antivirais/farmacologia , Animais Recém-Nascidos , Herpes Simples/tratamento farmacológico , Aciclovir/farmacologia , Herpesvirus Humano 2
3.
Arch Virol ; 166(7): 1869-1875, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33877422

RESUMO

Although chemotherapy is generally indicated for treatment of enterovirus infections, antivirals are currently not used in clinical practice. The use of monotherapy is the main reason for this unfavourable state. This is related to the fact that enterovirus progeny consist of innumerable quasispecies, allowing the virus to develop drug resistance quickly. Here, we present a consecutive alternating administration (CAA) treatment scheme for combining enterovirus inhibitors. Applying the CAA approach with a combination of pleconaril (capsid binder), guanidine HCl (viral 2C inhibitor), and oxoglaucine (PI4KB inhibitor) (PGO) was found to be effective in the treatment of newborn mice infected with a massive inoculum (20 MLD50) of the coxsackievirus B3 cardiotropic Woodruff or neurotropic Nancy strain. In addition to preventing drug resistance, the CAA approach resulted in the parallel development of increased susceptibility to the compounds in the PGO combination. These observations demonstrate the therapeutic potential of the CAA approach for treatment of enterovirus infections.


Assuntos
Antivirais/administração & dosagem , Infecções por Coxsackievirus/tratamento farmacológico , Enterovirus Humano B/efeitos dos fármacos , Animais , Farmacorresistência Viral/efeitos dos fármacos , Quimioterapia Combinada/métodos , Humanos , Camundongos , Camundongos Endogâmicos ICR , Resultado do Tratamento
4.
Acta Virol ; 65(4): 411-419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34978843

RESUMO

The effects of double combinations of enterovirus (EV) replication inhibitors against Coxsackieviruses B1 (neurotropic Connecticut-5 strain) and B3 (cardiotropic Woodruff and neurotropic Nancy strains) were tested in cell culture experiments. Compounds with different mechanisms of action were studied: pleconaril, guanidine.HCl, MDL-860 and oxoglaucine. A three-dimensional method was applied for determining the character of the combined effect. The study determined several synergistic double combinations: guanidine.HCL + pleconaril or MDL-860 against Coxsackievirus B1; MDL-860 + each of the other EV replication inhibitors and guanidine.HCl + pleconaril against the cardiotropic Woodruff strain of Coxsackievirus B3; MDL-860 + oxoglaucine against the neurotropic Nancy strain of Coxsackievirus B3. No increased cytotoxicity was manifested in any of the tested double combinations. Keywords: antivirals; combination activity; Coxsackieviruses.


Assuntos
Infecções por Coxsackievirus , Infecções por Enterovirus , Enterovirus , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Coxsackievirus/tratamento farmacológico , Enterovirus Humano B , Infecções por Enterovirus/tratamento farmacológico , Humanos
5.
Pathog Dis ; 78(9)2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33090201

RESUMO

A novel approach for treatment of enterovirus infections was characterized. Application of treatment course of consecutive alternating administration (CAA) of triple combination of enterovirus replication inhibitors in experimental infections (20 MLD50) with coxsackievirus B3 (CVB3) strains in newborn mice is presented. It was established that in infection with cardiotropic Woodruff strain the combination of pleconaril, МDL-860 and oxoglaucine (PMO) subjected to the CAA scheme, a significant protective effect was observed. Monotherapeutic courses as well as simultaneously daily applied PMO were without effect. Analogous data were observed at experimental infection with the neurotriopic Nancy strain of CVB3. Following IC50 values of virus samples taken every day from target organs of infected animals during the whole period of study, a drug-resistance was established in monotherapy with compounds-partners in the PMO combination. At courses by the treatment scheme CAA of PMO development of drug-resistance was not established, but an increased susceptibility to the effect of the inhibitor-components in the combination was proven. Toxicity of PMO applied via the CAA scheme and in the monotherapeutic courses in both healthy and CVB3 infected animals was recorded. All data obtained prove the potential of the CAA treatment scheme for development of effective chemotherapy of enterovirus infections.


Assuntos
Apomorfina/análogos & derivados , Infecções por Coxsackievirus/tratamento farmacológico , Enterovirus Humano B/efeitos dos fármacos , Nitrilas/farmacologia , Oxidiazóis/farmacologia , Oxazóis/farmacologia , Animais , Antivirais/farmacologia , Apomorfina/farmacologia , Linhagem Celular , Infecções por Coxsackievirus/virologia , Modelos Animais de Doenças , Farmacorresistência Viral , Sinergismo Farmacológico , Quimioterapia Combinada , Enterovirus Humano B/fisiologia , Humanos , Camundongos , Replicação Viral/efeitos dos fármacos
7.
Bioorg Chem ; 85: 487-497, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30782563

RESUMO

A series of 60 nitrobenzonitrile analogues of the anti-viral agent MDL-860 were synthesized (50 of which are new) and evaluated for their activity against three types of enteroviruses (coxsackievirus B1, coxsackievirus B3 and poliovirus 1). Among them, six diaryl ethers (20e, 27e, 28e, 29e, 33e and 35e) demonstrated high in vitro activity (SI > 50) towards at least one of the tested viruses and very low cytotoxicity against human cells. Compound 27e possesses the broadest spectrum of activity towards all tested viruses in the same way as MDL-860 does. The most active derivatives (27e, 29e and 35e) against coxsackievirus B1 were tested in vivo in newborn mice experimentally infected with 20 MLD50 of coxsackievirus B1. Compound 29e showed promising in vivo activity (protection index 26% and 4 days lengthening of mean survival time). QSAR analysis of the substituent effects on the in vitro cytotoxicity (CC50) and anti-viral activity of the nitrobenzonitrile derivatives was carried out and adequate QSAR models for the anti-viral activity of the compounds against poliovirus 1 and coxsackievirus B1 were constructed.


Assuntos
Antivirais/farmacologia , Nitrilas/farmacologia , Poliovirus/efeitos dos fármacos , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Cristalografia por Raios X , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nitrilas/síntese química , Nitrilas/química , Relação Quantitativa Estrutura-Atividade
8.
Bioorg Med Chem Lett ; 27(19): 4540-4543, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28870395

RESUMO

A series of twelve novel compounds, analogues of antiviral agent MDL-860 were synthesized and their antiviral activity was evaluated in vitro against enteroviruses poliovirus 1 (PV1), Coxsackieviruses B1 (CVB1) and Coxsackieviruses B3 (CVB3). Compounds 14, 24 and 25 manifested strong antiviral effects against CVB1 and PV1 (SI values of 405 and 118 for CVB1 and PV1 respectively). In contrast to the wide anti-enteroviral activity of MDL-860, these three compounds were inactive against CVB3. Compounds 14, 24 and 25 along with MDL-860 were tested in vivo in mice infected with CVB1. Marked protective effects of compounds 14 and 24 were established, PI values of 50% and 33.3%, respectively. In addition, almost all of the tested compounds manifested very low toxicity.


Assuntos
Antivirais/farmacologia , Infecções por Enterovirus/tratamento farmacológico , Enterovirus/efeitos dos fármacos , Nitrilas/farmacologia , Animais , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nitrilas/síntese química , Nitrilas/química , Relação Estrutura-Atividade
9.
Antiviral Res ; 121: 138-44, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26196747

RESUMO

Currently, clinically effective antivirals for use in the treatment of enteroviral (EV) infections do not exist. The main reason is the development of drug resistance, the principle obstacle in the development of EV infection chemotherapy, based til now on monotherapy. The most important achievement of our previous studies was the development of a novel scheme for in vivo application of a triple combination of EV inhibitors with different modes of action against Coxsackievirus B (CVB) infections in mice. It consists of consecutive alternating administration (CAA) of the substances in the combination. Here, we tested the effect of the triple combination pleconaril, guanidine-HCl, and oxoglaucine (PGO) via CAA in newborn mice infected with a neurotropic strain of CVB1 (20 LD50 per mouse). This combination manifested a considerable protective effect with pleconaril doses of 25-200mg/kg: it decreased mortality rate (protection index, PI, between 31.3% and 67.7%) and increased mean survival time (MST) by 4-6days. Pleconaril monotherapy demonstrated activity similar to that of PGO via CAA, as measured by PI values, but MST values were slightly lower. However, it also greatly suppressed growth of infected suckling mice, especially at 200mg/kg. This toxic effect was avoided with CAA of PGO at pleconaril doses of 25-100mg/kg. Pleconaril monotherapy administered every 3days was ineffective. The PGO with CAA treatment course decreased infectious virus content, whereas pleconaril monotherapy did not. Analysis of drug-sensitivity in brain samples from CVB1 infected mice, based on IC50 (50% inhibitory concentration) values from cell culture experiments, showed that the CAA course counteracted the development of drug resistance to pleconaril and oxoglaucine in the triple PGO combination and increased drug sensitivity. In contrast, pleconaril and oxoglaucine monotherapies resulted in drug resistance. This data clearly proves the effectiveness of the proposed novel approach-the CAA treatment course-for combined application of EV replication inhibitors.


Assuntos
Antivirais/administração & dosagem , Infecções do Sistema Nervoso Central/tratamento farmacológico , Infecções por Coxsackievirus/tratamento farmacológico , Enterovirus Humano B/efeitos dos fármacos , Animais , Apomorfina/administração & dosagem , Apomorfina/análogos & derivados , Encéfalo/virologia , Modelos Animais de Doenças , Farmacorresistência Viral , Quimioterapia Combinada/métodos , Guanidina/administração & dosagem , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Oxidiazóis/administração & dosagem , Oxazóis , Análise de Sobrevida , Resultado do Tratamento
10.
Antivir Chem Chemother ; 24(5-6): 136-147, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27815331

RESUMO

BACKGROUND: Chemotherapy is an important tool for controlling enterovirus infections, but clinically effective anti-enterovirus drugs do not currently exist, mainly due to the development of drug resistance. We investigated the combination effects of enterovirus replication inhibitors in order to limit this process. In previous studies, we showed the efficacy of consecutive alternating administration of the triple combinations disoxaril/guanidine/oxoglaucine and pleconaril/guanidine/oxoglaucine against coxsackievirus B1 infection in newborn mice. Drug sensitivity tests of the viral brain isolates showed that these drug combinations prevented the development of drug resistance. METHODS: In the current study, we replaced guanidine-HCl with enteroviral RNA synthesis inhibitor MDL-860 to test the effect of a new triple combination-pleconaril/MDL-860/oxoglaucine-applied via consecutive alternating administration in newborn mice infected subcutaneously with 20 MLD50 of coxsackievirus B1. RESULTS: The pleconaril/MDL-860/oxoglaucine combination via consecutive alternating administration showed high activity at the 75 mg/kg MDL-860 dose: a protective effect of 50% and a pronounced suppression of brain virus titers. Moreover, along with prevention of drug resistance, a phenomenon of increased drug sensitivity was established. MDL-860 sensitivity in pleconaril/MDL-860/oxoglaucine increased 8.2 times vs. placebo (29 times vs. monotherapy) on day 7 and oxoglaucine sensitivity-4.9 times vs. placebo (by 6.8 times vs. monotherapy) on day 13. As concerns pleconaril, a demonstrable prevention of drug resistance was registered without increase of drug sensitivity. Daily, simultaneous administration of pleconaril/MDL-860/oxoglaucine showed no protective effects and led to a rapid development of drug resistance. CONCLUSIONS: These results add new support for using consecutive alternating administration treatment courses to achieve clinically effective chemotherapy of enterovirus infections.


Assuntos
Antivirais/farmacologia , Apomorfina/análogos & derivados , Infecções por Coxsackievirus/tratamento farmacológico , Enterovirus Humano B/efeitos dos fármacos , Enterovirus Humano B/crescimento & desenvolvimento , Nitrilas/farmacologia , Oxidiazóis/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/administração & dosagem , Antivirais/química , Apomorfina/administração & dosagem , Apomorfina/química , Apomorfina/farmacologia , Células Cultivadas , Farmacorresistência Viral/efeitos dos fármacos , Quimioterapia Combinada , Humanos , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Nitrilas/administração & dosagem , Nitrilas/química , Oxidiazóis/administração & dosagem , Oxidiazóis/química , Oxazóis
11.
Artigo em Inglês | MEDLINE | ID: mdl-27442375

RESUMO

Human enteroviruses distributed worldwide are causative agents of a broad spectrum of diseases with extremely high morbidity, including a series of severe illnesses of the central nervous system, heart, endocrine pancreas, skeleton muscles, etc., as well as the common cold contributing to the development of chronic respiratory diseases, including the chronic obstructive pulmonary disease. The above mentioned diseases along with the significantly high morbidity and mortality in children, as well as in the high-risk populations (immunodeficiencies, neonates) definitely formulate the chemotherapy as the main tool for the control of enterovirus infections. At present, clinically effective antivirals for use in the treatment of enteroviral infection do not exist, in spite of the large amount of work carried out in this field. The main reason for this is the development of drug resistance. We studied the process of development of resistance to the strongest inhibitors of enteroviruses, WIN compounds (VP1 protein hydrophobic pocket blockers), especially in the models in vivo, Coxsackievirus B (CV-B) infections in mice. We introduced the tracing of a panel of phenotypic markers (MIC50 value, plaque shape and size, stability at 50℃, pathogenicity in mice) for characterization of the drug-mutants (resistant and dependent) as a very important stage in the study of enterovirus inhibitors. Moreover, as a result of VP1 RNA sequence analysis performed on the model of disoxaril mutants of CVB1, we determined the molecular basis of the drug-resistance. The monotherapy courses were the only approach used till now. For the first time in the research for anti-enterovirus antivirals our team introduced the testing of combination effect of the selective inhibitors of enterovirus replication with different mode of action. This study resulted in the selection of a number of very effective in vitro double combinations with synergistic effect and a broad spectrum of sensitive enteroviruses. The most prospective attainment in our examinations in this field was the development of a novel scheme for the combined application of anti-enteroviral substances in coxsackievirus B1 neuroinfection in newborn mice. It consisted of a consecutive, alternating and non simultaneous administration of the substances in the combination. The triple combination - disoxaril- guanidine. HCl-oxoglaucine (DGO) showed a high effectiveness expressed in the marked reduction of the mortality rate in infected mice as compared both to the placebo group, and to the partner compounds used alone every day, and to the same combination applied simultaneously every day. The studies of the drug sensitivity of viral brain isolates from mice treated with DGO combination showed not only preserved, but even increased sensitivity to the drugs included in the combination. Obviously, the consecutive alternating administration of anti-enteroviral substances hinders the occurrence of drug-resistance in the course of the experimental enteroviral infections in mice.


Assuntos
Antivirais/uso terapêutico , Infecções por Enterovirus/tratamento farmacológico , Enterovirus/efeitos dos fármacos , Animais , Antivirais/efeitos adversos , Farmacorresistência Viral/genética , Quimioterapia Combinada , Enterovirus/genética , Enterovirus/patogenicidade , Infecções por Enterovirus/diagnóstico , Infecções por Enterovirus/mortalidade , Infecções por Enterovirus/virologia , Humanos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA