Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Proteomics ; 21(1): 15, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402394

RESUMO

BACKGROUND: Hypertension is an important public health priority with a high prevalence in Africa. It is also an independent risk factor for kidney outcomes. We aimed to identify potential proteins and pathways involved in hypertension-associated albuminuria by assessing urinary proteomic profiles in black South African participants with combined hypertension and albuminuria compared to those who have neither condition. METHODS: The study included 24 South African cases with both hypertension and albuminuria and 49 control participants who had neither condition. Protein was extracted from urine samples and analysed using ultra-high-performance liquid chromatography coupled with mass spectrometry. Data were generated using data-independent acquisition (DIA) and processed using Spectronaut™ 15. Statistical and functional data annotation were performed on Perseus and Cytoscape to identify and annotate differentially abundant proteins. Machine learning was applied to the dataset using the OmicLearn platform. RESULTS: Overall, a mean of 1,225 and 915 proteins were quantified in the control and case groups, respectively. Three hundred and thirty-two differentially abundant proteins were constructed into a network. Pathways associated with these differentially abundant proteins included the immune system (q-value [false discovery rate] = 1.4 × 10- 45), innate immune system (q = 1.1 × 10- 32), extracellular matrix (ECM) organisation (q = 0.03) and activation of matrix metalloproteinases (q = 0.04). Proteins with high disease scores (76-100% confidence) for both hypertension and chronic kidney disease included angiotensinogen (AGT), albumin (ALB), apolipoprotein L1 (APOL1), and uromodulin (UMOD). A machine learning approach was able to identify a set of 20 proteins, differentiating between cases and controls. CONCLUSIONS: The urinary proteomic data combined with the machine learning approach was able to classify disease status and identify proteins and pathways associated with hypertension-associated albuminuria.

2.
J Proteome Res ; 19(12): 4754-4765, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33166149

RESUMO

Mass spectrometry has greatly improved the analysis of phosphorylation events in complex biological systems and on a large scale. Despite considerable progress, the correct identification of phosphorylated sites, their quantification, and their interpretation regarding physiological relevance remain challenging. The MS Resource Pillar of the Human Proteome Organization (HUPO) Human Proteome Project (HPP) initiated the Phosphopeptide Challenge as a resource to help the community evaluate methods, learn procedures and data analysis routines, and establish their own workflows by comparing results obtained from a standard set of 94 phosphopeptides (serine, threonine, tyrosine) and their nonphosphorylated counterparts mixed at different ratios in a neat sample and a yeast background. Participants analyzed both samples with their method(s) of choice to report the identification and site localization of these peptides, determine their relative abundances, and enrich for the phosphorylated peptides in the yeast background. We discuss the results from 22 laboratories that used a range of different methods, instruments, and analysis software. We reanalyzed submitted data with a single software pipeline and highlight the successes and challenges in correct phosphosite localization. All of the data from this collaborative endeavor are shared as a resource to encourage the development of even better methods and tools for diverse phosphoproteomic applications. All submitted data and search results were uploaded to MassIVE (https://massive.ucsd.edu/) as data set MSV000085932 with ProteomeXchange identifier PXD020801.


Assuntos
Fosfopeptídeos , Proteoma , Humanos , Espectrometria de Massas , Fosforilação , Proteômica
3.
Proteomics ; 20(21-22): e1900382, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32415754

RESUMO

The increasing amount of publicly available proteomics data creates opportunities for data scientists to investigate quality metrics in novel ways. QuaMeter IDFree is used to generate quality metrics from 665 RAW files and 97 WIFF files representing publicly available "shotgun" mass spectrometry datasets. These experiments are selected to represent Mycobacterium tuberculosis lysates, mouse MDSCs, and exosomes derived from human cell lines. Machine learning techniques are demonstrated to detect outliers within experiments and it is shown that quality metrics may be used to distinguish sources of variability among these experiments. In particular, the findings demonstrate that according to nested ANOVA performed on an SDS-PAGE shotgun principal component analysis, runs of fractions from the same gel regions cluster together rather than technical replicates, close temporal proximity, or even biological samples. This indicates that the individual fraction may have had a higher impact on the quality metrics than other factors. In addition, sample type, instrument type, mass analyzer, fragmentation technique, and digestion enzyme are identified as sources of variability. From a quality control perspective, the importance of study design and in particular, the run order, is illustrated in seeking ways to limit the impact of technical variability.


Assuntos
Benchmarking , Proteoma , Proteômica , Animais , Cromatografia Líquida , Espectrometria de Massas , Camundongos
4.
Sci Rep ; 10(1): 6201, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32277089

RESUMO

Broadly neutralising antibodies (bNAbs) against human immunodeficiency virus type 1 (HIV-1), such as CAP256-VRC26 are being developed for HIV prevention and treatment. These Abs carry a unique but crucial post-translational modification (PTM), namely O-sulfated tyrosine in the heavy chain complementarity determining region (CDR) H3 loop. Several studies have demonstrated that plants are suitable hosts for the generation of highly active anti-HIV-1 antibodies with the potential to engineer PTMs. Here we report the expression and characterisation of CAP256-VRC26 bNAbs with posttranslational modifications (PTM). Two variants, CAP256-VRC26 (08 and 09) were expressed in glycoengineered Nicotiana benthamiana plants. By in planta co-expression of tyrosyl protein sulfotransferase 1, we installed O-sulfated tyrosine in CDR H3 of both bNAbs. These exhibited similar structural folding to the mammalian cell produced bNAbs, but non-sulfated versions showed loss of neutralisation breadth and potency. In contrast, tyrosine sulfated versions displayed equivalent neutralising activity to mammalian produced antibodies retaining exceptional potency against some subtype C viruses. Together, the data demonstrate the enormous potential of plant-based systems for multiple posttranslational engineering and production of fully active bNAbs for application in passive immunisation or as an alternative for current HIV/AIDS antiretroviral therapy regimens.


Assuntos
Anticorpos Neutralizantes/genética , Anticorpos Anti-HIV/genética , Nicotiana/genética , Plantas Geneticamente Modificadas/genética , Anticorpos Neutralizantes/imunologia , Biotecnologia , Engenharia Genética , Anticorpos Anti-HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/terapia , HIV-1/genética , HIV-1/imunologia , Humanos , Plantas Geneticamente Modificadas/imunologia , Engenharia de Proteínas , Processamento de Proteína Pós-Traducional , Nicotiana/imunologia
5.
PLoS One ; 13(12): e0209373, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30571707

RESUMO

Rabies is an ancient and neglected zoonotic disease caused by the rabies virus, a neurotropic RNA virus that belongs to the Rhabdoviridae family, genus Lyssavirus. It remains an important public health problem as there are cost and health concerns imposed by the current human post exposure prophylaxis therapy. The use of monoclonal antibodies (mAbs) is therefore an attractive alternative. Rabies mostly affects people that reside in resource-limited areas where there are occasional failures in the cold-chain. These environmental changes may upset the stability of the mAbs. This study focused on mAbs 62-71-3 and E559; their structures, responses to freeze/thaw (F/T) and exposure to reactive oxygen species were therefore studied with the aid of a wide range of biophysical and in silico techniques in order to elucidate their stability and identify aggregation prone regions. E559 was found to be less stable than 62-71-3. The complementarity determining regions (CDR) contributed the most to its instability, more specifically: peptides 99EIWD102 and 92ATSPYT97 found in CDR3, Trp33 found in CDR1 and the oxidised Met34. The constant region "158SWNSGALTGHTFPAVL175" was also flagged by the special aggregation propensity (SAP) tool and F/T experiments to be highly prone to aggregation. The E559 peptides "4LQESGSVL11 from the heavy chain and 4LTQSPSSL11 from the light chain, were also highly affected by F/T. These residues may serve as good candidates for mutation, in the aim to bring forward more stable therapeutic antibodies, thus paving a way to a more safe and efficacious antibody-based cocktail treatment against rabies.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Antivirais/química , Vírus da Raiva/imunologia , Raiva/terapia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/genética , Anticorpos Antivirais/metabolismo , Anticorpos Antivirais/uso terapêutico , Temperatura Baixa/efeitos adversos , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Simulação por Computador , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Humanos , Testes de Neutralização , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Engenharia de Proteínas/métodos , Proteólise , Raiva/imunologia , Raiva/virologia , Espécies Reativas de Oxigênio/química , Nicotiana/genética , Nicotiana/metabolismo
6.
J Biomol Tech ; 29(1): 4-15, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29623005

RESUMO

The developing world is seeing rapid growth in the availability of biological mass spectrometry (MS), particularly through core facilities. As proteomics and metabolomics becomes locally feasible for investigators in these nations, application areas associated with high burden in these nations, such as infectious disease, will see greatly increased research output. This article evaluates the rapid growth of MS in South Africa (currently approaching 20 laboratories) as a model for establishing MS core facilities in other nations of the developing world. Facilities should emphasize new services rather than new instruments. The reduction of the delays associated with reagent and other supply acquisition would benefit both facilities and the users who make use of their services. Instrument maintenance and repair, often mediated by an in-country business for an international vendor, is also likely to operate on a slower schedule than in the wealthiest nations. A key challenge to facilities in the developing world is educating potential facility users in how best to design experiments for proteomics and metabolomics, what reagents are most likely to introduce problematic artifacts, and how to interpret results from the facility. Here, we summarize the experience of 6 different institutions to raise the level of biological MS available to researchers in South Africa.


Assuntos
Países em Desenvolvimento , Espectrometria de Massas/métodos , Custos e Análise de Custo , Espectrometria de Massas/economia , África do Sul
7.
Biophys Chem ; 224: 40-48, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28318907

RESUMO

Glutathione S-transferase A3-3 is the most catalytically efficient steroid isomerase enzyme known in humans, transforming Δ5-androstene-3-17-dione into Δ4-androstene-3-17-dione. GSTA3-3 catalyzes this reaction with ten-fold greater efficiency than GSTA1-1, its closest competitor in the Alpha class of GSTs. In order to examine the differences between Alpha class GSTs and to better elucidate the mechanism of GSTA3-3 the roles of Tyr9 and Arg15 were examined. Tyr9 is the major catalytic residue of Alpha class GSTs and Arg15 is proposed to be catalytically important to GSTA3-3 but never before experimentally examined. While the structure and stability of the Alpha class enzymes are highly comparable, subtle differences at the G-site of the enzymes account for GSTA3-3 having a ten-fold greater affinity for the substrate GSH. Y9F and R15L mutations, singly or together, have no effect on the structure and stability of GSTA3-3 (the same effect they have on GSTA1-1) despite the R15L mutation removing an interdomain salt-bridge at the active site. Hydrogen-deuterium exchange mass spectrometry also revealed that neither mutation had a significant effect on the conformational dynamics of GSTA3-3. The R15L and Y9F mutations are equally important to the specific activity of the steroid isomerase reaction; however, Arg15 is more important for lowering the pKa of GSH. Lowering the pKa of GSH being how GSTs catalyze their reactions. Additionally, there is evidence to suggest that Arg15 is integral to allowing GSTA3-3 to differentiate between Δ5-androstene-3-17-dione and Δ4-androstene-3-17-dione, indicating that Arg15 is a more important active-site residue than previously known.


Assuntos
Arginina/genética , Glutationa Transferase/química , Tirosina/genética , Catálise , Domínio Catalítico , Glutationa/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Estabilidade Proteica , Especificidade por Substrato
8.
Virology ; 498: 250-256, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27614701

RESUMO

Rabies is an acute viral encephalomyelitis in warm-blooded vertebrates, caused by viruses belonging to Rhabdovirus family and genus Lyssavirus. Although rabies is categorised as a neglected disease, the rabies virus (RABV) is the most studied amongst Lyssaviruses which show nearly identical infection patterns. In efforts to improving post-exposure prophylaxis, several anti-rabies monoclonal antibodies (mAbs) targeting the glycoprotein (G protein) sites I, II, III and G5 have been characterized. To explore cross-neutralization capacity of available mAbs and discover new possible B-cell epitopes, we have analyzed all available glycoprotein sequences from Lyssaviruses with a focus on sequence variation and conservation. This information was mapped on the structure of a representative G protein. We proposed several possible cross-neutralizing B-cell epitopes (GUVTTTF, WLRTV, REECLD and EHLVVEEL) in complement to the already well-characterized antigenic sites. The research could facilitate development of novel cross-reactive mAbs against RABV and even more broad, against possibly all Lyssavirus members.


Assuntos
Reações Cruzadas/imunologia , Glicoproteínas/imunologia , Lyssavirus/imunologia , Lyssavirus/metabolismo , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/virologia , Proteínas Virais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/química , Antígenos Virais/genética , Antígenos Virais/imunologia , Sequência Conservada , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Glicoproteínas/química , Glicoproteínas/genética , Lyssavirus/classificação , Lyssavirus/genética , Modelos Moleculares , Testes de Neutralização , Filogenia , Conformação Proteica , Proteínas Virais/química , Proteínas Virais/genética
9.
PLoS One ; 11(7): e0159313, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27427976

RESUMO

Rabies is a neglected zoonotic disease that has no effective treatment after onset of illness. However the disease can be prevented effectively by prompt administration of post exposure prophylaxis which includes administration of passive immunizing antibodies (Rabies Immune Globulin, RIG). Currently, human RIG suffers from many restrictions including limited availability, batch-to batch inconsistencies and potential for contamination with blood-borne pathogens. Anti-rabies monoclonal antibodies (mAbs) have been identified as a promising alternative to RIG. Here, we applied a plant-based transient expression system to achieve rapid, high level production and efficacy of the two highly potent anti-rabies mAbs E559 and 62-71-3. Expression levels of up to 490 mg/kg of recombinant mAbs were obtained in Nicotiana benthamiana glycosylation mutants by using a viral based transient expression system. The plant-made E559 and 62-71-3, carrying human-type fucose-free N-glycans, assembled properly and were structurally sound as determined by mass spectrometry and calorimetric density measurements. Both mAbs efficiently neutralised diverse rabies virus variants in vitro. Importantly, E559 and 62-71-3 exhibited enhanced protection against rabies virus compared to human RIG in a hamster model post-exposure challenge trial. Collectively, our results provide the basis for the development of a multi-mAb based alternative to RIG.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Antivirais/biossíntese , Imunização Passiva , Nicotiana/genética , Raiva/prevenção & controle , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/genética , Anticorpos Antivirais/administração & dosagem , Anticorpos Antivirais/genética , Clonagem Molecular , Feminino , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Mesocricetus , Testes de Neutralização , Plantas Geneticamente Modificadas , Raiva/imunologia , Raiva/mortalidade , Raiva/virologia , Vacina Antirrábica/administração & dosagem , Vacina Antirrábica/biossíntese , Vírus da Raiva/efeitos dos fármacos , Vírus da Raiva/crescimento & desenvolvimento , Vírus da Raiva/imunologia , Vírus da Raiva/patogenicidade , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Análise de Sobrevida , Nicotiana/metabolismo
10.
Biochemistry ; 52(51): 9394-402, 2013 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-24266513

RESUMO

Protein S-nitrosation is a post-translational modification that regulates the function of more than 500 human proteins. Despite its apparent physiological significance, S-nitrosation is poorly understood at a molecular level. Here, we investigated the effect of S-nitrosation on the activity, structure, stability, and dynamics of human glutathione transferase P1-1 (GSTP1-1), an important detoxification enzyme ubiquitous in aerobes. S-Nitrosation at Cys47 and Cys101 reduces the activity of the enzyme by 94%. Circular dichroism spectroscopy, acrylamide quenching, and amide hydrogen-deuterium exchange mass spectrometry experiments indicate that the loss of activity is caused by the introduction of local disorder at the active site of GSTP1-1. Furthermore, the modification destabilizes domain 1 of GSTP1-1 against denaturation, smoothing the unfolding energy landscape of the protein and introducing a refolding defect. In contrast, S-nitrosation at Cys101 alone introduces a refolding defect in domain 1 but compensates by stabilizing the domain kinetically. These data elucidate the physical basis for the regulation of GSTP1-1 by S-nitrosation and provide general insight into the consequences of S-nitrosation on protein stability and dynamics.


Assuntos
Regulação para Baixo , Glutationa S-Transferase pi/metabolismo , Modelos Moleculares , Nitratos/metabolismo , Processamento de Proteína Pós-Traducional , Domínio Catalítico/efeitos dos fármacos , Dicroísmo Circular , Cisteína/química , Cisteína/metabolismo , Medição da Troca de Deutério , Regulação para Baixo/efeitos dos fármacos , Glutationa S-Transferase pi/antagonistas & inibidores , Glutationa S-Transferase pi/química , Glutationa S-Transferase pi/genética , Humanos , Indicadores e Reagentes/farmacologia , Cinética , Nitrosação/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Redobramento de Proteína/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Desdobramento de Proteína/efeitos dos fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , S-Nitrosoglutationa/farmacologia , Espectrometria de Fluorescência
11.
Biochemistry ; 50(32): 7067-75, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21736346

RESUMO

The canonical glutathione transferase (GST) fold found in many monomeric and dimeric proteins consists of two domains that differ in structure and conformational dynamics. However, no evidence exists that the two domains unfold/fold independently at equilibrium, indicating the significance of interdomain interactions in governing cooperativity between domains. Bioinformatics analyses indicate the interdomain interface of the GST fold is large, predominantly hydrophobic with a high packing density explaining cooperative interdomain behavior. Structural alignments reveal a topologically conserved lock-and-key interaction across the domain interface in which a bulky hydrophobic residue ("key") protrudes from the surface of the N-domain and inserts into a pocket ("lock") in the C-domain. To better understand the molecular basis for the contribution of interdomain interactions toward cooperativity within the GST fold in the absence of any influence from quaternary interactions, studies were done with two monomeric GST proteins: Escherichia coli Grx2 (EcGrx2) and human CLIC1 (hCLIC1). Replacing the methionine "key" residue with alanine is structurally nondisruptive, whereas it significantly diminishes the folding cooperativity of both proteins. The loss in cooperativity between domains in the mutants is reflected by a change in the equilibrium folding mechanism from a wild-type two-state process to a three-state process, populating a stable folding intermediate.


Assuntos
Sequência Conservada , Glutationa Transferase/química , Dobramento de Proteína , Sequência de Bases , Sítios de Ligação , Dicroísmo Circular , Cristalografia por Raios X , Primers do DNA , Glutationa Transferase/genética , Glutationa Transferase/isolamento & purificação , Mutagênese Sítio-Dirigida , Conformação Proteica , Espectrofotometria Ultravioleta
12.
Biochemistry ; 48(35): 8413-21, 2009 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-19650640

RESUMO

Chloride intracellular channel protein 1 (CLIC1) functions as an anion channel in plasma and nuclear membranes when its soluble monomeric form converts to an integral-membrane form. The transmembrane region of CLIC1 is located in its thioredoxin-like domain 1, but the mechanism whereby the protein converts to its membrane conformation has yet to be determined. Since channel formation in membranes is enhanced at low pH (5 to 5.5), a condition that is found at the surface of membranes, the structural dynamics of soluble CLIC1 was studied at pH 7 and at pH 5.5 in the absence of membranes by amide hydrogen-deuterium exchange mass spectrometry (DXMS). Rapid hydrogen exchange data indicate that CLIC1 displays a similar core structure at these pH values. Domain 1 is less stable than the all-helical domain 2, and, while the structure of domain 1 remains intact, its conformational flexibility is further increased in an acidic environment (pH 5.5). In the absence of membrane, an acidic environment appears to prime the solution structure of CLIC1 by destabilizing domain 1 in order to lower the activation energy barrier for its conversion to the membrane-insertion conformation. The significantly enhanced H/D-exchange rates at pH 5.5 displayed by two segments (peptides 11-31 and 68-82) could be due to the protonation of acidic residues in salt bridges. One of these segments (peptide 11-31) includes part of the transmembrane region which, in the solution structure, consists of helix alpha1. This helix is intrinsically stable and is most likely retained in the membrane conformation. Strand beta2, another element of the transmembrane region, displays a propensity to form a helical structure and has putative N- and C-capping motifs, suggesting that it too most likely forms a helix in a lipid bilayer.


Assuntos
Canais de Cloreto/química , Deutério/química , Hidrogênio/química , Conformação Proteica , Estrutura Secundária de Proteína , Cloretos/química , Concentração de Íons de Hidrogênio , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA