Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 9(17): 9511-9531, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31534672

RESUMO

The arctic tern Sterna paradisaea completes the longest known annual return migration on Earth, traveling between breeding sites in the northern arctic and temperate regions and survival/molt areas in the Antarctic pack-ice zone. Salomonsen (1967, Biologiske Meddelelser, Copenhagen Danske Videnskabernes Selskab, 24, 1) put forward a hypothetical comprehensive interpretation of this global migration pattern, suggesting food distribution, wind patterns, sea ice distribution, and molt habits as key ecological and evolutionary determinants. We used light-level geolocators to record 12 annual journeys by eight individuals of arctic terns breeding in the Baltic Sea. Migration cycles were evaluated in light of Salomonsen's hypotheses and compared with results from geolocator studies of arctic tern populations from Greenland, Netherlands, and Alaska. The Baltic terns completed a 50,000 km annual migration circuit, exploiting ocean regions of high productivity in the North Atlantic, Benguela Current, and the Indian Ocean between southern Africa and Australia (sometimes including the Tasman Sea). They arrived about 1 November in the Antarctic zone at far easterly longitudes (in one case even at the Ross Sea) subsequently moving westward across 120-220 degrees of longitude toward the Weddell Sea region. They departed from here in mid-March on a fast spring migration up the Atlantic Ocean. The geolocator data revealed unexpected segregation in time and space between tern populations in the same flyway. Terns from the Baltic and Netherlands traveled earlier and to significantly more easterly longitudes in the Indian Ocean and Antarctic zone than terns from Greenland. We suggest an adaptive explanation for this pattern. The global migration system of the arctic tern offers an extraordinary possibility to understand adaptive values and constraints in complex pelagic life cycles, as determined by environmental conditions (marine productivity, wind patterns, low-pressure trajectories, pack-ice distribution), inherent factors (flight performance, molt, flocking), and effects of predation/piracy and competition.

2.
Naturwissenschaften ; 106(7-8): 45, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270619

RESUMO

Protandry, the earlier arrival of males at the breeding grounds relative to females, is common in migratory birds. However, due to difficulties in following individual birds on migration, we still lack knowledge about the spatiotemporal origin of protandry during the annual cycle, impeding our understanding of the proximate drivers of this phenomenon. Here, we use full annual cycle tracking data of red-backed shrikes Lanius collurio to investigate the occurrence of sex-related differences in migratory pattern, which could be viewed as precursors (proximate causes) to protandry. We find protandry with males arriving an estimated 8.3 days (SE = 4.1) earlier at the breeding area than females. Furthermore, we find that, averaged across all departure and arrival events throughout the annual cycle, males migrate an estimated 5.3 days earlier than females during spring compared to 0.01 days in autumn. Event-wise estimates suggest that a divergence between male and female migratory schedules is initiated at departure from the main non-breeding area, thousands of kilometres from-, and several months prior to arrival at the breeding area. Duration of migration, flight speed during migration and spatial locations of stationary sites were similar between sexes. Our results reveal that protandry might arise from sex-differential migratory schedules emerging at the departure from the main non-breeding area in southern Africa and retained throughout spring migration, supporting the view that sex-differential selection pressure operates during spring migration rather than autumn migration.


Assuntos
Migração Animal/fisiologia , Passeriformes/fisiologia , Processos de Determinação Sexual/fisiologia , Animais , Feminino , Masculino , Fatores Sexuais
3.
Sci Adv ; 3(1): e1601360, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28070557

RESUMO

Migratory birds track seasonal resources across and between continents. We propose a general strategy of tracking the broad seasonal abundance of resources throughout the annual cycle in the longest-distance migrating land birds as an alternative to tracking a certain climatic niche or shorter-term resource surplus occurring, for example, during spring foliation. Whether and how this is possible for complex annual spatiotemporal schedules is not known. New tracking technology enables unprecedented spatial and temporal mapping of long-distance movement of birds. We show that three Palearctic-African species track vegetation greenness throughout their annual cycle, adjusting the timing and direction of migratory movements with seasonal changes in resource availability over Europe and Africa. Common cuckoos maximize the vegetation greenness, whereas red-backed shrikes and thrush nightingales track seasonal surplus in greenness. Our results demonstrate that the longest-distance migrants move between consecutive staging areas even within the wintering region in Africa to match seasonal variation in regional climate. End-of-century climate projections indicate that optimizing greenness would be possible but that vegetation surplus might be more difficult to track in the future.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Mudança Climática , Estações do Ano , África , Animais , Europa (Continente)
4.
PLoS One ; 11(12): e0168940, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28005960

RESUMO

Being an obligate parasite, juvenile common cuckoos Cuculus canorus are thought to reach their African wintering grounds from Palearctic breeding grounds without guidance from experienced conspecifics but this has not been documented. We used satellite tracking to study naïve migrating common cuckoos. Juvenile cuckoos left breeding sites in Finland moving slowly and less consistently directed than adult cuckoos. Migration of the juveniles (N = 5) was initiated later than adults (N = 20), was directed toward the southwest-significantly different from the initial southeast direction of adults-and included strikingly long Baltic Sea crossings (N = 3). After initial migration of juvenile cuckoos toward Poland, the migration direction changed and proceeded due south, directly toward the winter grounds, as revealed by a single tag transmitting until arrival in Northwest Angola where northern adult cuckoos regularly winter. Compared to adults, the juvenile travelled straighter and faster, potentially correcting for wind drift along the route. That both migration route and timing differed from adults indicates that juvenile cuckoos are able to reach proper wintering grounds independently, guided only by their innate migration programme.


Assuntos
Migração Animal , Aves/fisiologia , Comunicações Via Satélite , Angola , Animais , Aves/crescimento & desenvolvimento , Finlândia , Maturidade Sexual , Fatores de Tempo , Vento
5.
PLoS One ; 9(1): e83515, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24421890

RESUMO

Narrow migration corridors known in diurnal, social migrants such as raptors, storks and geese are thought to be caused by topographical leading line effects in combination with learning detailed routes across generations. Here, we document narrow-front migration in a nocturnal, solitary migrant, the common cuckoo Cuculus canorus, using satellite telemetry. We tracked the migration of adult cuckoos from the breeding grounds in southern Scandinavia (n = 8), to wintering sites in south-western Central Africa (n = 6) and back to the breeding grounds (n = 3). Migration patterns were very complex; in addition to the breeding and wintering sites, six different stopover sites were identified during the 16,000 km annual route that formed a large-scale clockwise loop. Despite this complexity, individuals showed surprisingly similar migration patterns, with very little variation between routes. We compared observed tracks with simulated routes based on vector orientation (with and without effects of barriers on orientation and survival). Observed distances between routes were often significantly smaller than expected if the routes were established on the basis of an innate vector orientation programme. Average distance between individuals in eastern Sahel after having migrated more than 5,000 km for example, was merely 164 km. This implies that more sophisticated inherent guiding mechanisms, possibly involving elements of intermediate goal area navigation or more elaborate external cues, are necessary to explain the complex narrow-front migration pattern observed for the cuckoos in this study.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Comunicações Via Satélite , Telemetria/métodos , África Central , Animais , Simulação por Computador , Geografia , Orientação , Dinâmica Populacional , Estações do Ano
6.
J Anim Ecol ; 83(1): 176-84, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24102110

RESUMO

Information about when and where animals die is important to understand population regulation. In migratory animals, mortality might occur not only during the stationary periods (e.g. breeding and wintering) but also during the migration seasons. However, the relative importance of population limiting factors during different periods of the year remains poorly understood, and previous studies mainly relied on indirect evidence. Here, we provide direct evidence about when and where migrants die by identifying cases of confirmed and probable deaths in three species of long-distance migratory raptors tracked by satellite telemetry. We show that mortality rate was about six times higher during migration seasons than during stationary periods. However, total mortality was surprisingly similar between periods, which can be explained by the fact that risky migration periods are shorter than safer stationary periods. Nevertheless, more than half of the annual mortality occurred during migration. We also found spatiotemporal patterns in mortality: spring mortality occurred mainly in Africa in association with the crossing of the Sahara desert, while most mortality during autumn took place in Europe. Our results strongly suggest that events during the migration seasons have an important impact on the population dynamics of long-distance migrants. We speculate that mortality during spring migration may account for short-term annual variation in survival and population sizes, while mortality during autumn migration may be more important for long-term population regulation (through density-dependent effects).


Assuntos
Migração Animal/fisiologia , Aves Predatórias/fisiologia , Sistemas de Identificação Animal , Animais , Estações do Ano , Astronave
7.
PLoS One ; 7(7): e39833, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768314

RESUMO

BACKGROUND: Performance of migrating birds can be affected by a number of intrinsic and extrinsic factors like morphology, meteorological conditions and migration strategies. We compared travel speeds of four raptor species during their crossing of the Sahara desert. Focusing the analyses on this region allows us to compare different species under equivalent conditions in order to disentangle which factors affect migratory performance. METHODOLOGY/PRINCIPAL FINDING: We tracked raptors using GPS satellite transmitters from Sweden, Spain and Italy, and evaluated their migratory performance at both an hourly and a daily scale. Hourly data (flight speed and altitude for intervals of two hours) were analyzed in relation to time of day, species and season, and daily data (distance between roosting sites) in relation to species, season, day length and tailwind support. CONCLUSIONS/SIGNIFICANCE: Despite a clear variation in morphology, interspecific differences were generally very small, and did only arise in spring, with long-distance migrants (>5000 km: osprey and Western marsh-harrier) being faster than species that migrate shorter distances (Egyptian vulture and short-toed eagle). Our results suggest that the most important factor explaining hourly variation in flight speed is time of day, while at a daily scale, tailwind support is the most important factor explaining variation in daily distance, raising new questions about the consequences of possible future changes in worldwide wind patterns.


Assuntos
Migração Animal/fisiologia , Aves Predatórias/fisiologia , Estações do Ano , África do Norte , Animais
8.
Proc Biol Sci ; 279(1730): 1008-16, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21900322

RESUMO

The small size of the billions of migrating songbirds commuting between temperate breeding sites and the tropics has long prevented the study of the largest part of their annual cycle outside the breeding grounds. Using light-level loggers (geolocators), we recorded the entire annual migratory cycle of the red-backed shrike Lanius collurio, a trans-equatorial Eurasian-African passerine migrant. We tested differences between autumn and spring migration for nine individuals. Duration of migration between breeding and winter sites was significantly longer in autumn (average 96 days) when compared with spring (63 days). This difference was explained by much longer staging periods during autumn (71 days) than spring (9 days). Between staging periods, the birds travelled faster during autumn (356 km d(-1)) than during spring (233 km d(-1)). All birds made a protracted stop (53 days) in Sahelian sub-Sahara on southbound migration. The birds performed a distinct loop migration (22 000 km) where spring distance, including a detour across the Arabian Peninsula, exceeded the autumn distance by 22 per cent. Geographical scatter between routes was particularly narrow in spring, with navigational convergence towards the crossing point from Africa to the Arabian Peninsula. Temporal variation between individuals was relatively constant, while different individuals tended to be consistently early or late at different departure/arrival occasions during the annual cycle. These results demonstrate the existence of fundamentally different spatio-temporal migration strategies used by the birds during autumn and spring migration, and that songbirds may rely on distinct staging areas for completion of their annual cycle, suggesting more sophisticated endogenous control mechanisms than merely clock-and-compass guidance among terrestrial solitary migrants. After a century with metal-ringing, year-round tracking of long-distance migratory songbirds promises further insights into bird migration.


Assuntos
Migração Animal , Passeriformes/fisiologia , África , Animais , Europa (Continente) , Feminino , Geografia , Masculino , Estações do Ano , Fatores de Tempo
9.
Biol Lett ; 7(4): 502-5, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21307045

RESUMO

The exploration of animal migration has entered a new era with individual-based tracking during multiple years. Here, we investigated repeated migratory journeys of a long-distance migrating bird, the marsh harrier Circus aeruginosus, in order to analyse the variation within and between individuals with respect to routes and timing. We found that there was a stronger individual repeatability in time than in space. Thus, the annual timing of migration varied much less between repeated journeys of the same individual than between different individuals, while there was considerable variation in the routes of the same individual on repeated journeys. The overall contrast in repeatability between time and space was unexpected and may be owing to strong endogenous control of timing, while short-term variation in environmental conditions (weather and habitat) might promote route flexibility. The individual variation in migration routes indicates that the birds navigate mainly by other means than detailed route recapitulation based on landmark recognition.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Animais , Fatores de Tempo
10.
Proc Biol Sci ; 278(1710): 1339-46, 2011 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20980299

RESUMO

Wind and ocean currents may potentially have important effects on travelling animals, as an animal which does not respond to lateral flow will be drifted from its intended direction of movement. By analysing daily movements of migrating ospreys Pandion haliaetus and marsh harriers Circus aeruginosus, as recorded by satellite telemetry, in relation to global wind data, we showed that these raptors allow on average 47 per cent drift. Furthermore, our analyses revealed significant geographical and temporal variation in the response to crosswinds. During some parts of the migration, the birds drifted and in other parts they compensated or even overcompensated. In some regions, the response of marsh harriers depended on the wind direction. They drifted when the wind came from one side and (over)compensated when the wind came from the opposite side, and this flexible response was different in different geographical regions. These results suggest that migrating raptors modulate their response to crosswinds at different places and times during their travels and show that individual birds use a much more varied repertoire of behavioural responses to wind than hitherto assumed. Our results may also explain why contrasting and variable results have been obtained in previous studies of the effect of wind on bird migration.


Assuntos
Migração Animal , Falconiformes/fisiologia , Vento , África Ocidental , Animais , Europa (Continente) , Voo Animal , Orientação , Tecnologia de Sensoriamento Remoto , Especificidade da Espécie
11.
Biol Lett ; 6(3): 297-300, 2010 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19955169

RESUMO

We investigated the risk associated with crossing the Sahara Desert for migrating birds by evaluating more than 90 journeys across this desert by four species of raptors (osprey Pandion haliaetus, honey buzzard Pernis apivorus, marsh harrier Circus aeruginosus and Eurasian hobby Falco subbuteo) recorded by satellite telemetry. Forty per cent of the crossings included events of aberrant behaviours, such as abrupt course changes, slow travel speeds, interruptions, aborted crossings followed by retreats from the desert and failed crossings due to death, indicating difficulties for the migrants. The mortality during the Sahara crossing was 31 per cent per crossing attempt for juveniles (first autumn migration), compared with only 2 per cent for adults (autumn and spring combined). Mortality associated with the Sahara passage made up a substantial fraction (up to about half for juveniles) of the total annual mortality, demonstrating that this passage has a profound influence on survival and fitness of migrants. Aberrant behaviours resulted in late arrival at the breeding grounds and an increased probability of breeding failure (carry-over effects). This study also demonstrates that satellite tracking can be a powerful method to reveal when and where birds are exposed to enhanced risk and mortality during their annual cycles.


Assuntos
Migração Animal , Falconiformes , África do Norte , Animais , Voo Animal , Comunicações Via Satélite , Tempo (Meteorologia)
12.
Proc Biol Sci ; 276(1657): 727-33, 2009 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-18986977

RESUMO

Autumn migration of adult Eurasian hobbies Falco subbuteo from Europe to southern Africa was recorded by satellite telemetry and observed routes were compared with randomly simulated routes. Two non-random features of observed routes were revealed: (i) shifts to more westerly longitudes than straight paths to destinations and (ii) strong route convergence towards a restricted area close to the equator (1 degree S, 15 degrees E). The birds migrated south or southwest to approximately 10 degrees N, where they changed to south-easterly courses. The maximal spread between routes at 10 degrees N (2134 km) rapidly decreased to a minimum (67 km) close to the equator. We found a striking relationship between the route convergence and the distribution of continuous rainforest, suggesting that hobbies minimize flight distance across the forest, concentrating in a corridor where habitat may be more suitable for travelling and foraging. With rainforest forming a possible ecological barrier, many migrants may cross the equator either at 15 degrees E, similar to the hobbies, or at 30-40 degrees E, east of the rainforest where large-scale migration is well documented. Much remains to be understood about the role of the rainforest for the evolution and future of the trans-equatorial Palaearctic-African bird migration systems.


Assuntos
Migração Animal , Falconiformes/fisiologia , África , Animais , Geografia , Estações do Ano , Suécia , Telemetria , Árvores , Clima Tropical
13.
Proc Biol Sci ; 274(1625): 2523-30, 2007 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-17686732

RESUMO

Studies of bird migration in the Beringia region of Alaska and eastern Siberia are of special interest for revealing the importance of bird migration between Eurasia and North America, for evaluating orientation principles used by the birds at polar latitudes and for understanding the evolutionary implications of intercontinental migratory connectivity among birds as well as their parasites. We used tracking radar placed onboard the ice-breaker Oden to register bird migratory flights from 30 July to 19 August 2005 and we encountered extensive bird migration in the whole Beringia range from latitude 64 degrees N in Bering Strait up to latitude 75 degrees N far north of Wrangel Island, with eastward flights making up 79% of all track directions. The results from Beringia were used in combination with radar studies from the Arctic Ocean north of Siberia and in the Beaufort Sea to make a reconstruction of a major Siberian-American bird migration system in a wide Arctic sector between longitudes 110 degrees E and 130 degrees W, spanning one-third of the entire circumpolar circle. This system was estimated to involve more than 2 million birds, mainly shorebirds, terns and skuas, flying across the Arctic Ocean at mean altitudes exceeding 1 km (maximum altitudes 3-5 km). Great circle orientation provided a significantly better fit with observed flight directions at 20 different sites and areas than constant geographical compass orientation. The long flights over the sea spanned 40-80 degrees of longitude, corresponding to distances and durations of 1400-2600 km and 26-48 hours, respectively. The birds continued from this eastward migration system over the Arctic Ocean into several different flyway systems at the American continents and the Pacific Ocean. Minimization of distances between tundra breeding sectors and northerly stopover sites, in combination with the Beringia glacial refugium and colonization history, seemed to be important for the evolution of this major polar bird migration system.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Animais , Regiões Árticas , Evolução Biológica , Voo Animal/fisiologia , América do Norte , Orientação/fisiologia , Sibéria , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA