Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; : e0018724, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953643

RESUMO

It is well established that Staphylococcus aureus can incorporate exogenous straight-chain unsaturated fatty acids (SCUFAs) into membrane phospho- and glyco-lipids from various sources in supplemented culture media and when growing in vivo during infection. Given the enhancement of membrane fluidity when oleic acid (C18:1Δ9) is incorporated into lipids, we were prompted to examine the effect of medium supplementation with C18:1Δ9 on growth at low temperatures. C18:1Δ9 supported the growth of a cold-sensitive, branched-chain fatty acid (BCFA)-deficient mutant at 12°C. Interestingly, we found similar results in the BCFA-sufficient parental strain, supported by the fact that the incorporation of C18:1Δ9 into the membrane increased membrane fluidity in both strains. We show that the incorporation of C18:1Δ9 and its elongation product C20:1Δ11 into membrane lipids was required for growth stimulation and relied on a functional FakAB incorporation system. Lipidomics analysis of the phosphatidylglycerol and diglycosyldiacylglycerol lipid classes revealed major impacts of C18:1Δ9 and temperature on lipid species. Growth at 12°C in the presence of C18:1Δ9 also led to increased production of the carotenoid pigment staphyloxanthin. The enhancement of growth by C18:1Δ9 is an example of homeoviscous adaptation to low temperatures utilizing an exogenous fatty acid. This may be significant in the growth of S. aureus at low temperatures in foods that commonly contain C18:1Δ9 and other SCUFAs in various forms. IMPORTANCE: We show that Staphylococcus aureus can use its known ability to incorporate exogenous fatty acids to enhance its growth at low temperatures. Individual species of phosphatidylglycerols and diglycosyldiacylglycerols bearing one or two degrees of unsaturation derived from the incorporation of C18:1Δ9 at 12°C are described for the first time. In addition, enhanced production of the carotenoid staphyloxanthin occurs at low temperatures. The studies describe a biochemical reality underlying membrane biophysics. This is an example of homeoviscous adaptation to low temperatures utilizing exogenous fatty acids over the regulation of the biosynthesis of endogenous fatty acids. The studies have likely relevance to food safety in that unsaturated fatty acids may enhance the growth of S. aureus in the food environment.

2.
bioRxiv ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38352554

RESUMO

It is well established that Staphylococcus aureus can incorporate exogenous straight-chain unsaturated fatty acids (SCUFAs) into membrane phospho- and glyco-lipids from various sources in supplemented culture media, and when growing in vivo in an infection. Given the enhancement of membrane fluidity when oleic acid (C18:1Δ9) is incorporated into lipids, we were prompted to examine the effect of medium supplementation with C18:1Δ9 on growth at low temperatures. C18:1Δ9 supported the growth of a cold-sensitive, branched-chain fatty acid (BCFA)-deficient mutant at 12°C. Interestingly, we found similar results in the BCFA-sufficient parental strain. We show that incorporation of C18:1Δ9 and its elongation product C20:1Δ9 into membrane lipids was required for growth stimulation and relied on a functional FakAB incorporation system. Lipidomics analysis of the phosphatidylglycerol (PG) and diglycosyldiacylglycerol (DGDG) lipid classes revealed major impacts of C18:1Δ9 and temperature on lipid species. Growth at 12°C in the presence of C18:1Δ9 also led to increased production of the carotenoid pigment staphyloxanthin; however, this was not an obligatory requirement for cold adaptation. Enhancement of growth by C18:1Δ9 is an example of homeoviscous adaptation to low temperatures utilizing an exogenous fatty acid. This may be significant in the growth of S. aureus at low temperatures in foods that commonly contain C18:1Δ9 and other SCUFAs in various forms.

3.
Inorg Chem ; 61(6): 2733-2744, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35102739

RESUMO

Alzheimer's disease (AD) is a devastating neurological disorder for which soluble oligomers of the peptide amyloid-ß (Aß) are now recognized as the neurotoxic species. Metal-based therapeutics are uniquely suited to target Aß, with ruthenium-based (Ru) complexes emerging as propitious candidates. Recently, azole-based Ru(III) complexes were observed to modulate the aggregation of Aß in solution, where the inclusion of a primary amine proximal to the ligand coordination site improved the activity of the complexes. To advance these structure-activity relationships, a series of oxazole-based Ru complexes were prepared and evaluated for their ability to modulate Aß aggregation. From these studies, a lead candidate, Oc, emerged that had superior activity relative to its azole predecessors in modulating the aggregation of soluble Aß and diminishing its cytotoxicity. Further evaluation of Oc demonstrated its ability to disrupt formed Aß aggregates, resulting in smaller amorphous species. Because altering both sides of the aggregation equilibrium for Aß has not been previously suggested for metal-based complexes for AD, this work represents an exciting new avenue for improved therapeutic success.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Complexos de Coordenação/farmacologia , Fármacos Neuroprotetores/farmacologia , Oxazóis/farmacologia , Rutênio/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Sobrevivência Celular , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Conformação Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Oxazóis/química , Agregados Proteicos/efeitos dos fármacos , Ratos , Rutênio/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA